Expression, Purification, and Crystallization of the Vγ9Vδ2 T-cell Receptor Recognizing Protein/Peptide Antigens.

Crystallization Purification Recombinant expression T-cell receptor γδ T cell

Journal

The protein journal
ISSN: 1875-8355
Titre abrégé: Protein J
Pays: Netherlands
ID NLM: 101212092

Informations de publication

Date de publication:
Dec 2023
Historique:
accepted: 06 08 2023
pubmed: 25 8 2023
medline: 25 8 2023
entrez: 24 8 2023
Statut: ppublish

Résumé

γδ T cells, especially Vγ9Vδ2 T cells, play an important role in mycobacterial infection. We have identified some Vγ9Vδ2 T cells that recognize protein/peptide antigens derived from mycobacteria, which may induce protective immune responses to mycobacterial infection. To clarify the structural basis of the molecular recognition mechanism, we tried many methods to express the Vγ9Vδ2 T-cell receptor (TCR). The Vγ9Vδ2 TCR was not expressed well in a prokaryotic expression system or a baculovirus expression system, even after extensive optimization. In a mammalian cell expression system, the Vγ9Vδ2 TCR was expressed in the form of a soluble heterodimer, which was suitable for crystal screening. Reduced-temperature cultivation (cold shock) increased the yield of the recombinant TCR. The recombinant purified TCR was used for crystal trials, and crystals that could be used for X-ray diffraction were obtained. Although we have not yet determined the crystal structure of the Vγ9Vδ2 TCR, we have established a procedure for Vγ9Vδ2 TCR expression and purification, which is useful for basic research and potentially for clinical application.

Identifiants

pubmed: 37620608
doi: 10.1007/s10930-023-10151-3
pii: 10.1007/s10930-023-10151-3
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

778-791

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Papadopoulou M, Sanchez Sanchez G, Vermijlen D (2020) Innate and adaptive gammadelta T cells: how, when, and why. Immunol Rev 298:99–116
pubmed: 33146423 doi: 10.1111/imr.12926
Lee D, Rosenthal CJ, Penn NE, Dunn ZS, Zhou Y, Yang L (2022) Human gammadelta T cell subsets and their clinical applications for Cancer Immunotherapy, Cancers (Basel), 14
Chan KF, Duarte JDG, Ostrouska S, Behren A (2022) Gammadelta T cells in the Tumor Microenvironment-Interactions with other Immune cells. Front Immunol 13:894315
pubmed: 35880177 pmcid: 9307934 doi: 10.3389/fimmu.2022.894315
Wang X, Lin X, Zheng Z, Lu B, Wang J, Tan AH, Zhao M, Loh JT, Ng SW, Chen Q, Xiao F, Huang E, Ko KH, Huang Z, Li J, Kok KH, Lu G, Liu X, Lam KP, Liu W, Zhang Y, Yuen KY, Mak TW, Lu L (2021) Host-derived lipids orchestrate pulmonary gammadelta T cell response to provide early protection against influenza virus infection. Nat Commun 12:1914
pubmed: 33772013 pmcid: 7997921 doi: 10.1038/s41467-021-22242-9
Chen ZW (2013) Multifunctional immune responses of HMBPP-specific Vgamma2Vdelta2 T cells in M. tuberculosis and other infections. Cell Mol Immunol 10:58–64
pubmed: 23147720 doi: 10.1038/cmi.2012.46
Shen L, Huang D, Qaqish A, Frencher J, Yang R, Shen H, Chen ZW (2020) Fast-acting gammadelta T-cell subpopulation and protective immunity against infections. Immunol Rev 298:254–263
pubmed: 33037700 doi: 10.1111/imr.12927
Spencer CT, Abate G, Blazevic A, Hoft DF (2008) Only a subset of phosphoantigen-responsive gamma9delta2 T cells mediate protective tuberculosis immunity. J Immunol 181:4471–4484
pubmed: 18802050 doi: 10.4049/jimmunol.181.7.4471
Cheng C, Wang B, Gao L, Liu J, Chen X, Huang H, Zhao Z (2018) Next generation sequencing reveals changes of the gammadelta T cell receptor repertoires in patients with pulmonary tuberculosis. Sci Rep 8:3956
pubmed: 29500378 pmcid: 5834497 doi: 10.1038/s41598-018-22061-x
Xi X, Han X, Li L, Zhao Z (2011) Gammadelta T cells response to Mycobacterium tuberculosis in pulmonary tuberculosis patients using preponderant complementary determinant region 3 sequence. Indian J Med Res 134:356–361
pubmed: 21985819 pmcid: 3193717
Xi X, Han X, Li L, Zhao Z (2013) Identification of a new tuberculosis antigen recognized by gammadelta T cell receptor. Clin Vaccine Immunol 20:530–539
pubmed: 23389928 pmcid: 3623398 doi: 10.1128/CVI.00584-12
Deseke M, Prinz I (2020) Ligand recognition by the gammadelta TCR and discrimination between homeostasis and stress conditions. Cell Mol Immunol 17:914–924
pubmed: 32709926 pmcid: 7608190 doi: 10.1038/s41423-020-0503-y
Herrmann T, Karunakaran MM (2022) Butyrophilins: gammadelta T cell receptor ligands, immunomodulators and more. Front Immunol 13:876493
pubmed: 35371078 pmcid: 8968916 doi: 10.3389/fimmu.2022.876493
Gully BS, Rossjohn J, Davey MS (2021) Our evolving understanding of the role of the gammadelta T cell receptor in gammadelta T cell mediated immunity. Biochem Soc Trans 49:1985–1995
pubmed: 34515758 pmcid: 8589442 doi: 10.1042/BST20200890
Allison TJ, Winter CC, Fournie JJ, Bonneville M, Garboczi DN (2001) Structure of a human gammadelta T-cell antigen receptor. Nature 411:820–824
pubmed: 11459064 doi: 10.1038/35081115
Li H, Lebedeva MI, Llera AS, Fields BA, Brenner MB, Mariuzza RA (1998) Structure of the vdelta domain of a human gammadelta T-cell antigen receptor. Nature 391:502–506
pubmed: 9461220 doi: 10.1038/35172
Gunnarsen KS, Lunde E, Kristiansen PE, Bogen B, Sandlie I, Loset GA (2010) Periplasmic expression of soluble single chain T cell receptors is rescued by the chaperone FkpA. BMC Biotechnol 10:8
pubmed: 20128915 pmcid: 2834602 doi: 10.1186/1472-6750-10-8
Stone JD, Chervin AS, Aggen DH, Kranz DM (2012) T cell receptor engineering. Methods Enzymol 503:189–222
pubmed: 22230570 doi: 10.1016/B978-0-12-396962-0.00008-2
MacLachlan BJ, Greenshields-Watson A, Mason GH, Schauenburg AJ, Bianchi V, Rizkallah PJ, Sewell AK, Fuller A, Cole DK (2017) Using X-ray crystallography, Biophysics, and functional assays to determine the Mechanisms governing T-cell receptor recognition of Cancer Antigens, J Vis Exp,
Gunnarsen KS, Hoydahl LS, Neumann RS, Bjerregaard-Andersen K, Nilssen NR, Sollid LM, Sandlie I, Loset GA (2018) Soluble T-cell receptor design influences functional yield in an E. coli chaperone-assisted expression system. PLoS ONE 13:e0195868
pubmed: 29649333 pmcid: 5897000 doi: 10.1371/journal.pone.0195868
Uldrich AP, Nours JL, Pellicci DG, Gherardin NA, McPherson KG, Lim RT, Patel O, Beddoe T, Gras S, Rossjohn J, Godfrey DI (2013) CD1d-lipid antigen recognition by the gammadelta TCR. Nat Immunol 14:1137–1145
pubmed: 24076636 doi: 10.1038/ni.2713
Luoma AM, Castro CD, Mayassi T, Bembinster LA, Bai L, Picard D, Anderson B, Scharf L, Kung JE, Sibener LV, Savage PB, Jabri B, Bendelac A, Adams EJ (2013) Crystal structure of Vdelta1 T cell receptor in complex with CD1d-sulfatide shows MHC-like recognition of a self-lipid by human gammadelta T cells. Immunity 39:1032–1042
pubmed: 24239091 doi: 10.1016/j.immuni.2013.11.001
Sadio F, Stadlmayr G, Stadlbauer K, Graf M, Scharrer A, Ruker F, Wozniak-Knopp G (2020) Stabilization of soluble high-affinity T-cell receptor with de novo disulfide bonds. FEBS Lett 594:477–490
pubmed: 31552676 doi: 10.1002/1873-3468.13616
Zhang A, Piechocka-Trocha A, Li X, Walker BD (2022) A leucine Zipper Dimerization Strategy to Generate Soluble T Cell Receptors using the Escherichia coli expression system. Cells, p 11
Maynard J, Adams EJ, Krogsgaard M, Petersson K, Liu CW, Garcia KC (2005) High-level bacterial secretion of single-chain alphabeta T-cell receptors. J Immunol Methods 306:51–67
pubmed: 16198365 doi: 10.1016/j.jim.2005.07.022
Hayhurst A (2000) Improved expression characteristics of single-chain fv fragments when fused downstream of the Escherichia coli maltose-binding protein or upstream of a single immunoglobulin-constant domain. Protein Expr Purif 18:1–10
pubmed: 10648163 doi: 10.1006/prep.1999.1164
Walton TA, Sousa MC (2004) Crystal structure of Skp, a prefoldin-like chaperone that protects soluble and membrane proteins from aggregation. Mol Cell 15:367–374
pubmed: 15304217 doi: 10.1016/j.molcel.2004.07.023
Willcox BE, Gao GF, Wyer JR, O’Callaghan CA, Boulter JM, Jones EY, van der Merwe PA, Bell JI, Jakobsen BK (1999) Production of soluble alphabeta T-cell receptor heterodimers suitable for biophysical analysis of ligand binding. Protein Sci 8:2418–2423
pubmed: 10595544 pmcid: 2144200 doi: 10.1110/ps.8.11.2418
Liu L, Spurrier J, Butt TR, Strickler JE (2008) Enhanced protein expression in the baculovirus/insect cell system using engineered SUMO fusions. Protein Expr Purif 62:21–28
pubmed: 18713650 pmcid: 2585507 doi: 10.1016/j.pep.2008.07.010
Aricescu AR, Lu W, Jones EY (2006) A time- and cost-efficient system for high-level protein production in mammalian cells. Acta Crystallogr D Biol Crystallogr 62:1243–1250
pubmed: 17001101 doi: 10.1107/S0907444906029799
Raulet DH (1989) The structure, function, and molecular genetics of the gamma/delta T cell receptor. Annu Rev Immunol 7:175–207
pubmed: 2653369 doi: 10.1146/annurev.iy.07.040189.001135
Walseng E, Walchli S, Fallang LE, Yang W, Vefferstad A, Areffard A, Olweus J (2015) Soluble T-cell receptors produced in human cells for targeted delivery. PLoS ONE 10:e0119559
pubmed: 25875651 pmcid: 4395278 doi: 10.1371/journal.pone.0119559
van Boxel GI, Stewart-Jones G, Holmes S, Sainsbury S, Shepherd D, Gillespie GM, Harlos K, Stuart DI, Owens R, Jones EY (2009) Some lessons from the systematic production and structural analysis of soluble (alpha)(beta) T-cell receptors. J Immunol Methods 350:14–21
pubmed: 19715696 doi: 10.1016/j.jim.2009.08.008
Zhou Y, Morais-Cabral JH, Kaufman A, MacKinnon R (2001) Chemistry of ion coordination and hydration revealed by a K + channel-fab complex at 2.0 a resolution. Nature 414:43–48
pubmed: 11689936 doi: 10.1038/35102009
Reddy Chichili VP, Kumar V, Sivaraman J (2013) Linkers in the structural biology of protein-protein interactions. Protein Sci 22:153–167
pubmed: 23225024 doi: 10.1002/pro.2206
Gras S, Saulquin X, Reiser JB, Debeaupuis E, Echasserieau K, Kissenpfennig A, Legoux F, Chouquet A, Le Gorrec M, Machillot P, Neveu B, Thielens N, Malissen B, Bonneville M, Housset D (2009) Structural bases for the affinity-driven selection of a public TCR against a dominant human cytomegalovirus epitope. J Immunol 183:430–437
pubmed: 19542454 doi: 10.4049/jimmunol.0900556
Chang HC, Bao Z, Yao Y, Tse AG, Goyarts EC, Madsen M, Kawasaki E, Brauer PP, Sacchettini JC, Nathenson SG et al (1994) A general method for facilitating heterodimeric pairing between two proteins: application to expression of alpha and beta T-cell receptor extracellular segments. Proc Natl Acad Sci U S A 91:11408–11412
pubmed: 7972074 pmcid: 45240 doi: 10.1073/pnas.91.24.11408
Reeves PJ, Callewaert N, Contreras R, Khorana HG (2002) Structure and function in rhodopsin: high-level expression of rhodopsin with restricted and homogeneous N-glycosylation by a tetracycline-inducible N-acetylglucosaminyltransferase I-negative HEK293S stable mammalian cell line. Proc Natl Acad Sci U S A 99:13419–13424
pubmed: 12370423 pmcid: 129688 doi: 10.1073/pnas.212519299
Blaha J, Pachl P, Novak P, Vanek O (2015) Expression and purification of soluble and stable ectodomain of natural killer cell receptor LLT1 through high-density transfection of suspension adapted HEK293S GnTI(-) cells, protein Expr Purif, 109 7–13
Heras B, Martin JL (2005) Post-crystallization treatments for improving diffraction quality of protein crystals. Acta Crystallogr D Biol Crystallogr 61:1173–1180
pubmed: 16131749 doi: 10.1107/S0907444905019451
Meraviglia S, El Daker S, Dieli F, Martini F, Martino A (2011) gammadelta T cells cross-link innate and adaptive immunity in Mycobacterium tuberculosis infection, Clin Dev Immunol, (2011) 587315
Chen ZW (2016) Protective immune responses of major Vgamma2Vdelta2 T-cell subset in M. tuberculosis infection. Curr Opin Immunol 42:105–112
pubmed: 27491008 pmcid: 5754217 doi: 10.1016/j.coi.2016.06.005
Wulfing C, Pluckthun A (1994) Correctly folded T-cell receptor fragments in the periplasm of Escherichia coli. Influence of folding catalysts. J Mol Biol 242:655–669
pubmed: 7932722 doi: 10.1006/jmbi.1994.1615
Anand NN, Mandal S, MacKenzie CR, Sadowska J, Sigurskjold B, Young NM, Bundle DR, Narang SA (1991) Bacterial expression and secretion of various single-chain fv genes encoding proteins specific for a Salmonella serotype B O-antigen. J Biol Chem 266:21874–21879
pubmed: 1939211 doi: 10.1016/S0021-9258(18)54718-9
Burgess-Brown NA, Sharma S, Sobott F, Loenarz C, Oppermann U, Gileadi O (2008) Codon optimization can improve expression of human genes in Escherichia coli: a multi-gene study. Protein Expr Purif 59:94–102
pubmed: 18289875 doi: 10.1016/j.pep.2008.01.008
Chin JX, Chung BK, Lee DY (2014) Codon optimization OnLine (COOL): a web-based multi-objective optimization platform for synthetic gene design. Bioinformatics 30:2210–2212
pubmed: 24728853 doi: 10.1093/bioinformatics/btu192
Yin Y, Wang XX, Mariuzza RA (2012) Crystal structure of a complete ternary complex of T-cell receptor, peptide-MHC, and CD4. Proc Natl Acad Sci U S A 109:5405–5410
pubmed: 22431638 pmcid: 3325661 doi: 10.1073/pnas.1118801109
Chaudhary S, Pak JE, Gruswitz F, Sharma V, Stroud RM (2012) Overexpressing human membrane proteins in stably transfected and clonal human embryonic kidney 293S cells. Nat Protoc 7:453–466
pubmed: 22322218 pmcid: 3613139 doi: 10.1038/nprot.2011.453
Goehring A, Lee CH, Wang KH, Michel JC, Claxton DP, Baconguis I, Althoff T, Fischer S, Garcia KC, Gouaux E (2014) Screening and large-scale expression of membrane proteins in mammalian cells for structural studies. Nat Protoc 9:2574–2585
pubmed: 25299155 pmcid: 4291175 doi: 10.1038/nprot.2014.173
Al-Fageeh MB, Marchant RJ, Carden MJ, Smales CM (2006) The cold-shock response in cultured mammalian cells: harnessing the response for the improvement of recombinant protein production. Biotechnol Bioeng 93:829–835
pubmed: 16329142 doi: 10.1002/bit.20789

Auteurs

Chaofei Cheng (C)

Stem Cell Research Center, Henan Key Laboratory of Stem Cell Differentiation and Modification, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.
People's Hospital of Henan University, Zhengzhou, 450003, China.
MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Centre for Tuberculosis Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.

Zhendong Zhao (Z)

MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Centre for Tuberculosis Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China. timjszzd@163.com.
Clinical Immunology Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China. timjszzd@163.com.

Guangzhi Liu (G)

Stem Cell Research Center, Henan Key Laboratory of Stem Cell Differentiation and Modification, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China. Guangzhi72@126.com.
People's Hospital of Henan University, Zhengzhou, 450003, China. Guangzhi72@126.com.

Classifications MeSH