Precise molecular sieving of ethylene from ethane using triptycene-derived submicroporous carbon membranes.
Journal
Nature materials
ISSN: 1476-4660
Titre abrégé: Nat Mater
Pays: England
ID NLM: 101155473
Informations de publication
Date de publication:
Oct 2023
Oct 2023
Historique:
received:
18
08
2021
accepted:
07
07
2023
medline:
25
8
2023
pubmed:
25
8
2023
entrez:
24
8
2023
Statut:
ppublish
Résumé
Replacement or debottlenecking of the extremely energy-intensive cryogenic distillation technology for the separation of ethylene from ethane has been a long-standing challenge. Membrane technology could be a desirable alternative with potentially lower energy consumption. However, the current key obstacle for industrial implementation of membrane technology is the low mixed-gas selectivity of polymeric, inorganic or hybrid membrane materials, arising from the similar sizes of ethylene (3.75 Å) and ethane (3.85 Å). Here we report precise molecular sieving and plasticization-resistant carbon membranes made by pyrolysing a shape-persistent three-dimensional triptycene-based ladder polymer of intrinsic microporosity with unparalleled mixed-gas performance for ethylene/ethane separation, with a selectivity of ~100 at 10 bar feed pressure, and with long-term continuous stability for 30 days demonstrated. These submicroporous carbon membranes offer opportunities for membrane technology in a wide range of notoriously difficult separation applications in the petrochemical and natural gas industry.
Identifiants
pubmed: 37620645
doi: 10.1038/s41563-023-01629-7
pii: 10.1038/s41563-023-01629-7
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1218-1226Subventions
Organisme : King Abdullah University of Science and Technology (KAUST)
ID : BAS/1/1323-01-01
Organisme : King Abdullah University of Science and Technology (KAUST)
ID : BAS/1/1372/-01-01
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Nature Limited.
Références
Vora, B., Funk, G. & Bozzano. A. in Handbook of Petroleum Processing Vol. 1 (eds Treese, S. A. et al.) 883–904 (Springer, 2015).
Sholl, D. S. & Lively, R. P. Seven chemical separations to change the world. Nature 532, 435–437 (2016).
Eldridge, R. B. Olefin/paraffin separation technology: a review. Ind. Eng. Chem. Res. 32, 2208–2212 (1993).
Koros, W. J. Evolving beyond the thermal age of separation processes: membranes can lead the way. AIChE J. 50, 2326–2334 (2004).
Colling, C. W., Huff, J., Georgia, A. & Bartels, J. V. Processes using solid perm-selective membranes in multiple groups for simultaneous recovery of specified products from a fluid mixture. US patent 6,830,691 (2004).
Ren, Y. et al. Membrane-based olefin/paraffin separations. Adv. Sci. 7, 2001398 (2020).
Rungta, M., Zhang, C., Koros, W. J. & Xu, L. Membrane-based ethylene/ethane separation: the upper bound and beyond. AIChE J. 59, 3475–3489 (2013).
Chan, S. S., Wang, R., Chung, T. S. & Liu, Y. C2 and C3 hydrocarbon separations in poly(1,5-naphthalene-2,2′-bis(3,4-phthalic) hexafluoropropane) diimide (6FDA-1,5-NDA) dense membranes. J. Membr. Sci. 210, 55–64 (2002).
Tanaka, K., Taguchi, A., Hao, J., Kita, H. & Okamoto, K. Permeation and separation properties of polyimide membranes to olefins and paraffins. J. Membr. Sci. 121, 197–207 (1996).
Staudt-Bickel, C. & Koros, W. J. Olefin/paraffin gas separations with 6FDA-based polyimide membranes. J. Membr. Sci. 170, 205–214 (2000).
Rungta, M., Xu, L. & Koros, W. J. Structure-performance characterization for carbon molecular sieve membranes using molecular scale gas probes. Carbon 85, 429–442 (2015).
Pinnau, I. & Toy, L. G. Solid polymer electrolyte composite membranes for olefin/paraffin separation. J. Membr. Sci. 184, 39–48 (2001).
Merkel, T. C. et al. Silver salt facilitated transport membranes for olefin/paraffin separations: carrier instability and a novel regeneration method. J. Membr. Sci. 447, 177–189 (2013).
Campos, A. C. C., Dos Reis, R. A., Ortiz, A., Gorri, D. & Ortiz, I. A perspective of solutions for membrane instabilities in olefin/paraffin separations: a review. Ind. Eng. Chem. Res. 57, 10071–10085 (2018).
Zheng, Y. et al. Preparation of steam-stable high-silica CHA (SSZ-13) membranes for CO
Pan, Y., Li, T., Lestari, G. & Lai, Z. Effective separation of propylene/propane binary mixtures by ZIF-8 membranes. J. Membr. Sci. 390–391, 93–98 (2012).
Lin, R. B. et al. Molecular sieving of ethylene from ethane using a rigid metal–organic framework. Nat. Mater. 17, 1128–1133 (2018).
Li, L. et al. Ethane/ethylene separation in a metal-organic framework with iron-peroxo sites. Science 362, 443–446 (2018).
Bux, H., Chmelik, C., Krishna, R. & Caro, J. Ethene/ethane separation by the MOF membrane ZIF-8: molecular correlation of permeation, adsorption, diffusion. J. Membr. Sci. 369, 284–289 (2011).
James, J. B., Wang, J., L. Meng, L. & Lin, Y. S. ZIF-8 membrane ethylene/ethane transport characteristics in single and binary gas mixtures. Ind. Eng. Chem. Res. 56, 7567–7575 (2017).
Wei, R. et al. Carbon nanotube supported oriented metal organic framework membrane for effective ethylene/ethane separation. Sci. Adv. 8, eabm6741 (2022).
Bachman, J. E., Smith, Z. P., Li, T., Xu, T. & Long, J. R. Enhanced ethylene separation and plasticization resistance in polymer membranes incorporating metal–organic framework nanocrystals. Nat. Mater. 15, 845–849 (2016).
Ploegmakers, J., Japip, S. & Nijmeijer, K. Mixed matrix membranes containing MOFs for ethylene/ethane separation Part A: membrane preparation and characterization. J. Membr. Sci. 428, 445–453 (2013).
Chen, G. et al. M-gallate MOF/6FDA-polyimide mixed-matrix membranes for C
Chen, X., Chen, G., Liu, G., Liu. G. & Jin, W. UTSA-280 metal–organic framework incorporated 6FDA-polyimide mixed-matrix membranes for ethylene/ethane separation. AIChE J. 68, e17688 (2022).
Hayashi, J. I. et al. Separation of ethane/ethylene and propane/propylene systems with a carbonized BPDA-pp′ODA polyimide membrane. Ind. Eng. Chem. Res. 35, 4176–4181 (1996).
Suda, H. & Haraya, K. Alkene/alkane permselectivities of a carbon molecular sieve membrane. Chem. Commun. https://doi.org/10.1039/A606385C (1997).
Kiyono, M., Williams, P. J. & Koros, W. J. Effect of pyrolysis atmosphere on separation performance of carbon molecular sieve membranes. J. Membr. Sci. 359, 2–10 (2010).
Centeno, T. A., Vilas, J. L. & Fuertes, A. B. Effects of phenolic resin pyrolysis conditions on carbon membrane performance for gas separation. J. Membr. Sci. 228, 45–54 (2004).
Kiyono, M., Williams, P. J. & Koros, W. J. Generalization of effect of oxygen exposure on formation and performance of carbon molecular sieve membranes. Carbon 48, 4442–4449 (2010).
Ma, Y. et al. Creation of well-defined “mid-sized” micropores in carbon molecular sieve membranes. Angew. Chem. Int. Ed. 58, 13259–13265 (2019).
Das, M., Perry, J. D. & Koros, W. J. Effect of processing on carbon molecular sieve structure and performance. Carbon 48, 3737–3749 (2010).
Lua, A. C. & Su, J. Effects of carbonisation on pore evolution and gas permeation properties of carbon membranes from Kapton® polyimide. Carbon 44, 2964–2972 (2006).
Hazazi, K. et al. Ultra-selective carbon molecular sieve membranes for natural gas separations based on a carbon-rich intrinsically microporous polyimide precursor. J. Membr. Sci. 585, 1–9 (2019).
Xu, L., Rungta, M. & Koros, W. J. Matrimid® derived carbon molecular sieve hollow fiber membranes for ethylene/ethane separation. J. Membr. Sci. 380, 138–147 (2011).
Xu, L. et al. Olefins-selective asymmetric carbon molecular sieve hollow fiber membranes for hybrid membrane-distillation processes for olefin/paraffin separations. J. Membr. Sci. 423–424, 314–323 (2012).
Rungta, M., Xu, L. & Koros, W. J. Carbon molecular sieve dense film membranes derived from Matrimid® for ethylene/ethane separation. Carbon 50, 1488–1502 (2012).
Adams, J. S. et al. New insights into structural evolution in carbon molecular sieve membranes during pyrolysis. Carbon 141, 238–246 (2019).
Wang, Q., Huang, F., Cornelius, C. J. & Fan, Y. Carbon molecular sieve membranes derived from crosslinkable polyimides for CO
Chu, Y. H. et al. Iron-containing carbon molecular sieve membranes for advanced olefin/paraffin separations. J. Membr. Sci. 548, 609–620 (2018).
Liao, K. S., Japip, S., Lai, J. Y. & Chung, T. S. Boron-embedded hydrolyzed PIM-1 carbon membranes for synergistic ethylene/ethane purification. J. Membr. Sci. 534, 92–99 (2017).
Wang, Y. et al. Polymers of intrinsic microporosity for energy-intensive membrane-based gas separations. Mater. Today Nano 3, 69–95 (2018).
Wang, Y. et al. Recent progress on polymers of intrinsic microporosity and thermally modified analogue materials for membrane-based fluid separations. Small Struct. 2, 2100049 (2021).
Wang, Y., Ghanem, B. S., Yu Han, Y. & Pinnau, I. State-of-the-art polymers of intrinsic microporosity for high-performance gas separation membranes. Curr. Opin. Chem. Eng. 35, 100755 (2022).
Salinas, O., Ma, X., Litwiller, E. & Pinnau, I. Ethylene/ethane permeation, diffusion and gas sorption properties of carbon molecular sieve membranes derived from the prototype ladder polymer of intrinsic microporosity (PIM-1). J. Membr. Sci. 504, 133–140 (2016).
Salinas, O., Ma, X., Litwiller, E. & Pinnau, I. High-performance carbon molecular sieve membranes for ethylene/ethane separation derived from an intrinsically microporous polyimide. J. Membr. Sci. 500, 115–123 (2016).
Salinas, O., Ma, X., Wang, Y., Han, Y. & Pinnau, I. Carbon molecular sieve membrane from a microporous spirobisindane-based polyimide precursor with enhanced ethylene/ethane mixed-gas selectivity. RSC Adv. 7, 3265–3272 (2017).
Lei et al. Carbon membranes for CO
Lei et al. Carbon hollow fiber membranes for a molecular sieve with precise-cutoff ultramicropores for superior hydrogen separation. Nat. Commun. 12, 268 (2021).
Cuesta, A., Dhamelincourt, P., Laureyns, J., Martínez-Alonso, A. & Tascón, J. M. D. Raman microprobe studies on carbon materials. Carbon 32, 1523–1532 (1994).
Freitas, J. C. C., Bonagamba, T. J. & Emmerich, F. G. Investigation of biomass- and polymer-based carbon materials using
Zhang, C. & Koros, W. J. Ultraselective carbon molecular sieve membranes with tailored synergistic sorption selective properties. Adv. Mater. 29, 1701631 (2017).
Malpass-Evans, R. et al. Effect of bridgehead methyl substituents on the gas permeability of Tröger’s-base derived polymers of intrinsic microporosity. Membranes 10, 62 (2020).
Hazazi et al. Catalytic arene-norbornene annulation (CANAL) ladder polymer derived carbon membranes with unparalleled hydrogen/carbon dioxide size-sieving capability. J. Membr. Sci. 654, 120548 (2022).
Swaidan, R. Intrinsically Microporous Polymer Membranes for High Performance Gas Separation. PhD thesis, King Abdullah Univ. Science and Technology (2014).
O’Brien, K. C., Koros, W. J. & Barbari, T. A. A new technique for the measurement of multicomponent gas transport through polymeric films. J. Membr. Sci. 29, 229–238 (1986).
Liu, Z., Qiu, W., Quan, W. & Koros, W. J. Advanced carbon molecular sieve membranes derived from molecularly engineered cross-linkable copolyimide for gas separations. Nat. Mater. 22, 109–116 (2023).
Cheng, Y. et al. Mixed matrix membranes with surface functionalized metal–organic framework sieves for efficient propylene/propane separation. Adv. Mater. 35, 2300296 (2023).
Yi, S., Ghanem, B., Liu, Y., Pinnau, I. & Koros, W. J. Ultraselective glassy polymer membranes with unprecedented performance for energy-efficient sour gas separation. Sci. Adv. 5, eaaw5459 (2019).
Knebel, A. et al. Solution processible metal–organic frameworks for mixed-matrix membranes using porous liquids. Nat. Mater. 19, 1346–1353 (2020).
Datta, S. J. et al. Rational design of mixed-matrix metal-organic framework membranes for molecular separations. Science 376, 1080–1087 (2022).