Sensitivity of CNN image analysis to multifaceted measurements of neurite growth.
Concept vector
Convolutional neural network
Explainable AI
High-content image analysis
Machine learning
Neurite growth
Neurite guidance
Neuron morphology
Journal
BMC bioinformatics
ISSN: 1471-2105
Titre abrégé: BMC Bioinformatics
Pays: England
ID NLM: 100965194
Informations de publication
Date de publication:
24 Aug 2023
24 Aug 2023
Historique:
received:
14
12
2022
accepted:
11
08
2023
medline:
28
8
2023
pubmed:
25
8
2023
entrez:
24
8
2023
Statut:
epublish
Résumé
Quantitative analysis of neurite growth and morphology is essential for understanding the determinants of neural development and regeneration, however, it is complicated by the labor-intensive process of measuring diverse parameters of neurite outgrowth. Consequently, automated approaches have been developed to study neurite morphology in a high-throughput and comprehensive manner. These approaches include computer-automated algorithms known as 'convolutional neural networks' (CNNs)-powerful models capable of learning complex tasks without the biases of hand-crafted models. Nevertheless, their complexity often relegates them to functioning as 'black boxes.' Therefore, research in the field of explainable AI is imperative to comprehend the relationship between CNN image analysis output and predefined morphological parameters of neurite growth in order to assess the applicability of these machine learning approaches. In this study, drawing inspiration from the field of automated feature selection, we investigate the correlation between quantified metrics of neurite morphology and the image analysis results from NeuriteNet-a CNN developed to analyze neurite growth. NeuriteNet accurately distinguishes images of neurite growth based on different treatment groups within two separate experimental systems. These systems differentiate between neurons cultured on different substrate conditions and neurons subjected to drug treatment inhibiting neurite outgrowth. By examining the model's function and patterns of activation underlying its classification decisions, we discover that NeuriteNet focuses on aspects of neuron morphology that represent quantifiable metrics distinguishing these groups. Additionally, it incorporates factors that are not encompassed by neuron morphology tracing analyses. NeuriteNet presents a novel tool ideally suited for screening morphological differences in heterogeneous neuron groups while also providing impetus for targeted follow-up studies.
Identifiants
pubmed: 37620759
doi: 10.1186/s12859-023-05444-4
pii: 10.1186/s12859-023-05444-4
pmc: PMC10464248
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
320Subventions
Organisme : NEI NIH HHS
ID : R01 EY026817
Pays : United States
Organisme : NIGMS NIH HHS
ID : T32 GM139776
Pays : United States
Organisme : NINDS NIH HHS
ID : T32 NS045549
Pays : United States
Organisme : NIDCD NIH HHS
ID : F31-DC020371
Pays : United States
Organisme : NIMH NIH HHS
ID : T32 MH106454
Pays : United States
Organisme : NIBIB NIH HHS
ID : R01 EB004640
Pays : United States
Organisme : NEI NIH HHS
ID : R01-EY026817
Pays : United States
Organisme : NIDCD NIH HHS
ID : R01 DC012578
Pays : United States
Organisme : NINDS NIH HHS
ID : T32-NS045549
Pays : United States
Organisme : NIDCD NIH HHS
ID : R01-DC012578
Pays : United States
Organisme : NIBIB NIH HHS
ID : R01-EB004640
Pays : United States
Organisme : NIMH NIH HHS
ID : T32-MH106454
Pays : United States
Informations de copyright
© 2023. BioMed Central Ltd., part of Springer Nature.
Références
BMC Bioinformatics. 2011 Jun 08;12:230
pubmed: 21651810
IEEE Trans Image Process. 2021;30:1395-1407
pubmed: 33315562
Sci Rep. 2021 Apr 14;11(1):8179
pubmed: 33854113
Biomaterials. 2013 Jan;34(1):42-54
pubmed: 23069708
Physiol Rev. 2018 Oct 1;98(4):2477-2522
pubmed: 30156495
Front Cell Neurosci. 2017 Nov 20;11:359
pubmed: 29209173
Biomaterials. 2014 Jul;35(20):5327-5336
pubmed: 24709523
Eur J Pain. 2015 Feb;19(2):236-45
pubmed: 25070481
Comput Biol Med. 2021 Dec 4;140:105111
pubmed: 34891095
Otol Neurotol. 2018 Jan;39(1):119-126
pubmed: 29227456
Neuron. 2013 Mar 20;77(6):1017-38
pubmed: 23522039
Muscle Nerve. 2013 Jan;47(1):1-11
pubmed: 23192899
PLoS One. 2020 Aug 13;15(8):e0237674
pubmed: 32790772
Front Psychiatry. 2020 Oct 29;11:551299
pubmed: 33192663
Tissue Eng Part B Rev. 2016 Apr;22(2):125-35
pubmed: 26421660
J Healthc Eng. 2021 Apr 3;2021:5528622
pubmed: 33884157
Biochem Med (Zagreb). 2012;22(3):276-82
pubmed: 23092060
Nat Commun. 2013;4:2690
pubmed: 24162165
Front Cell Dev Biol. 2020 May 13;8:328
pubmed: 32528949
J Neurosci Methods. 2014 Mar 30;225:65-70
pubmed: 24485871
Proc Natl Acad Sci U S A. 2019 Oct 29;116(44):22071-22080
pubmed: 31619572
EMBO Mol Med. 2017 Jan;9(1):7-26
pubmed: 27794029
Neuroscience. 2014 May 30;268:33-47
pubmed: 24631676
Comput Biol Med. 2021 Apr;131:104248
pubmed: 33631497
Science. 2016 Jun 24;352(6293):1586-90
pubmed: 27339989
Proc Natl Acad Sci U S A. 2020 Feb 18;117(7):3828-3838
pubmed: 32015128
Sensors (Basel). 2021 Sep 01;21(17):
pubmed: 34502782
Trends Neurosci. 2015 May;38(5):307-18
pubmed: 25765323
PLoS One. 2020 Jul 16;15(7):e0234529
pubmed: 32673338
Neuroinformatics. 2021 Oct;19(4):703-717
pubmed: 34342808
Hear Res. 2011 Aug;278(1-2):96-105
pubmed: 21616131
Front Neuroanat. 2016 Nov 01;10:102
pubmed: 27847467
J Vis Exp. 2012 Mar 21;(61):
pubmed: 22473312
Cytometry A. 2004 Apr;58(2):167-76
pubmed: 15057970
Sci Rep. 2015 Mar 02;5:8644
pubmed: 25728549
J Neurosci. 1997 Jan 15;17(2):646-58
pubmed: 8987787
Hear Res. 2021 Sep 15;409:108315
pubmed: 34343850
Elife. 2019 Feb 22;8:
pubmed: 30794158
Exp Neurol. 2020 Apr;326:113140
pubmed: 31812556
ACS Appl Mater Interfaces. 2014 Jul 23;6(14):11265-76
pubmed: 24911660
Neural Regen Res. 2018 Jan;13(1):105-111
pubmed: 29451214
J Neurosci Methods. 2021 Nov 1;363:109349
pubmed: 34480956
J Big Data. 2021;8(1):53
pubmed: 33816053
J Transl Med. 2020 Feb 3;18(1):53
pubmed: 32014004