Life motion signals bias the perception of apparent motion direction.
biological motion
motion direction perception
social attention
walking direction
Journal
British journal of psychology (London, England : 1953)
ISSN: 2044-8295
Titre abrégé: Br J Psychol
Pays: England
ID NLM: 0373124
Informations de publication
Date de publication:
25 Aug 2023
25 Aug 2023
Historique:
received:
09
10
2022
accepted:
17
07
2023
medline:
25
8
2023
pubmed:
25
8
2023
entrez:
25
8
2023
Statut:
aheadofprint
Résumé
Walking direction conveyed by biological motion (BM) cues, which humans are highly sensitive to since birth, can elicit involuntary shifts of attention to enhance the detection of static targets. Here, we demonstrated that such intrinsic sensitivity to walking direction could also modulate the direction perception of simultaneously presented dynamic stimuli. We showed that the perceived direction of apparent motion was biased towards the walking direction even though observers had been informed in advance that the walking direction of BM did not predict the apparent motion direction. In particular, rightward BM cues had an advantage over leftward BM cues in altering the perception of motion direction. Intriguingly, this perceptual bias disappeared when BM cues were shown inverted, or when the critical biological characteristics were removed from the cues. Critically, both the perceptual direction bias and the rightward advantage persisted even when only local BM cues were presented without any global configuration. Furthermore, the rightward advantage was found to be specific to social cues (i.e., BM), as it vanished when non-social cues (i.e., arrows) were utilized. Taken together, these findings support the existence of a specific processing mechanism for life motion signals and shed new light on their influences in a dynamic environment.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : the STl2030-Major Projects
ID : 2021ZD0203800
Organisme : the STl2030-Major Projects
ID : 2022ZD0205100
Organisme : the National Natural Science Foundation of China
ID : 31830037
Organisme : the Science Foundation of Institute of Psychology, Chinese Academy of Sciences
Organisme : the Fundamental Research Funds for the Central Universities
Informations de copyright
© 2023 The British Psychological Society.
Références
Aaen-Stockdale, C., Thompson, B., Hess, R. F., & Troje, N. F. (2008). Biological motion perception is cue-invariant. Journal of Vision, 8(8), 6. https://doi.org/10.1167/8.8.6
Bardi, L., Di Giorgio, E., Lunghi, M., Troje, N. F., & Simion, F. (2015). Walking direction triggers visuo-spatial orienting in 6-month-old infants and adults: An eye tracking study. Cognition, 141, 112-120. https://doi.org/10.1016/j.cognition.2015.04.014
Bavelier, D., Schneider, K. A., & Monacelli, A. (2002). Reflexive gaze orienting induces the line-motion illusion. Vision Research, 42(26), 2817-2827. https://doi.org/10.1016/s0042-6989(02)00335-8
Blake, R., & Shiffrar, M. (2007). Perception of human motion. Annual Review of Psychology, 58(1), 47-73. https://doi.org/10.1146/annurev.psych.57.102904.190152
Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10(4), 433-436.
Bulf, H., de Hevia, M. D., & Macchi Cassia, V. (2016). Small on the left, large on the right: Numbers orient visual attention onto space in preverbal infants. Developmental Science, 19(3), 394-401. https://doi.org/10.1111/desc.12315
Chang, D. H. F., Ban, H., Ikegaya, Y., Fujita, I., & Troje, N. F. (2018). Cortical and subcortical responses to biological motion. NeuroImage, 174, 87-96. https://doi.org/10.1016/j.neuroimage.2018.03.013
Chang, D. H. F., & Troje, N. F. (2009). Acceleration carries the local inversion effect in biological motion perception. Journal of Vision, 9(1), 19. https://doi.org/10.1167/9.1.19
Coste, A., Bardy, B. G., Janaqi, S., Slowinski, P., Tsaneva-Atanasova, K., Goupil, J. L., & Marin, L. (2021). Decoding identity from motion: How motor similarities colour our perception of self and others. Psychological Research, 85(2), 509-519. https://doi.org/10.1007/s00426-020-01290-8
Davidenko, N., Heller, N. H., Schooley, M. J., & McDougall, S. G. (2022). Visual priming of two-step motion sequences. Journal of Vision, 22(8), 14. https://doi.org/10.1167/jov.22.8.14
Di Giorgio, E., Lunghi, M., Rugani, R., Regolin, L., Dalla Barba, B., Vallortigara, G., & Simion, F. (2019). A mental number line in human newborns. Developmental Science, 22(6), e12801. https://doi.org/10.1111/desc.12801
Ding, X., Yin, J., Shui, R., Zhou, J., & Shen, M. (2017). Backward-walking biological motion orients attention to moving away instead of moving toward. Psychonomic Bulletin & Review, 24(2), 447-452. https://doi.org/10.3758/s13423-016-1083-9
Dittrich, W. H., Troscianko, T., Lea, S. E., & Morgan, D. (1996). Perception of emotion from dynamic point-light displays represented in dance. Perception, 25(6), 723-738. https://doi.org/10.1068/p250727
Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G*power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175-191. https://doi.org/10.3758/bf03193146
Felisberti, F. M., & Zanker, J. M. (2005). Attention modulates perception of transparent motion. Vision Research, 45(19), 2587-2599. https://doi.org/10.1016/j.visres.2005.03.004
Fitzgerald, S. A., Brooks, A., van der Zwan, R., & Blair, D. (2014). Seeing the world topsy-turvy: The primary role of kinematics in biological motion inversion effects. i-Perception, 5(2), 120-131. https://doi.org/10.1068/i0612
Friesen, C. K., & Kingstone, A. (1998). The eyes have it! Reflexive orienting is triggered by nonpredictive gaze. Psychonomic Bulletin & Review, 5(3), 490-495. https://doi.org/10.3758/BF03208827
Friesen, C. K., Ristic, J., & Kingstone, A. (2004). Attentional effects of counterpredictive gaze and arrow cues. Journal of Experimental Psychology: Human Perception and Performance, 30(2), 319-329. https://doi.org/10.1037/0096-1523.30.2.319
Fujimoto, K. (2003). Motion induction from biological motion. Perception, 32(10), 1273-1277. https://doi.org/10.1068/p5134
Fujimoto, K., & Sato, T. (2006). Backscroll illusion: Apparent motion in the background of locomotive objects. Vision Research, 46(1), 14-25. https://doi.org/10.1016/j.visres.2005.09.027
Fujimoto, K., & Yagi, A. (2007). Backscroll illusion in far peripheral vision. Journal of Vision, 7(8), 16. https://doi.org/10.1167/7.8.16
Fujimoto, K., & Yagi, A. (2008). Biological motion alters coherent motion perception. Perception, 37(12), 1783-1789. https://doi.org/10.1068/p5933
Fujimoto, K., Yagi, A., & Sato, T. (2009). Strength and variability of the backscroll illusion. Vision Research, 49(7), 759-764. https://doi.org/10.1016/j.visres.2009.02.006
Halovic, S., & Kroos, C. (2018). Walking my way? Walker gender and display format confounds the perception of specific emotions. Human Movement Science, 57, 461-477. https://doi.org/10.1016/j.humov.2017.10.012
Hirai, M., Saunders, D. R., & Troje, N. F. (2011). Allocation of attention to biological motion: Local motion dominates global shape. Journal of Vision, 11(3), 4. https://doi.org/10.1167/11.3.4
Ji, H., Wang, L., & Jiang, Y. (2020). Cross-category adaptation of reflexive social attention. Journal of Experimental Psychology: General, 149(11), 2145-2153. https://doi.org/10.1037/xge0000766
Johansson, G. (1973). Visual perception of biological motion and a model for its analysis. Perception & Psychophysics, 14(2), 201-211. https://doi.org/10.3758/BF03212378
Johnson, M. H. (2006). Biological motion: A perceptual life detector? Current Biology, 16(10), 376-377. https://doi.org/10.1016/j.cub.2006.04.008
Koerfer, K., & Lappe, M. (2020). Pitting optic flow, object motion, and biological motion against each other. Journal of Vision, 20(8), 18. https://doi.org/10.1167/jov.20.8.18
Kuhlmeier, V. A., Troje, N. F., & Lee, V. (2010). Young infants detect the direction of biological motion in point-light displays. Infancy, 15(1), 83-93. https://doi.org/10.1111/j.1532-7078.2009.00003.x
Laubrock, J., Engbert, R., & Kliegl, R. (2008). Fixational eye movements predict the perceived direction of ambiguous apparent motion. Journal of Vision, 8(14), 13. https://doi.org/10.1167/8.14.13
Liu, W., Yuan, X., Liu, D., Wang, L., & Jiang, Y. (2021). Social attention triggered by eye gaze and walking direction is resistant to temporal decay. Journal of Experimental Psychology: Human Perception and Performance, 47(9), 1237-1246. https://doi.org/10.1037/xhp0000939
Loula, F., Prasad, S., Harber, K., & Shiffrar, M. (2005). Recognizing people from their movement. Journal of Experimental Psychology: Human Perception and Performance, 31(1), 210-220. https://doi.org/10.1037/0096-1523.31.1.210
Lunghi, M., Di Giorgio, E., Benavides-Varela, S., & Simion, F. (2020). Covert orienting of attention in 3-month-old infants: The case of biological motion. Infant Behavior and Development, 58, 101422. https://doi.org/10.1016/j.infbeh.2020.101422
Matsushima, T., Miura, M., Patzke, N., Toji, N., Wada, K., Ogura, Y., Homma, K. J., Sgadò, P., & Vallortigara, G. (2022). Fetal blockade of nicotinic acetylcholine transmission causes autism-like impairment of biological motion preference in the neonatal chick. Cerebral Cortex Communications, tgac041. https://doi.org/10.1093/texcom/tgac041
Mayer, K. M., Riddell, H., & Lappe, M. (2019). Concurrent processing of optic flow and biological motion. Journal of Experimental Psychology: General, 148(11), 1938-1952. https://doi.org/10.1037/xge0000568
Miller, G. F., & Shepard, R. N. (1993). An objective criterion for apparent motion based on phase discrimination. Journal of Experimental Psychology: Human Perception and Performance, 19(1), 48-62. https://doi.org/10.1037//0096-1523.19.1.48
Nummenmaa, L., & Hietanen, J. K. (2009). How attentional systems process conflicting cues. The superiority of social over symbolic orienting revisited. Journal of Experimental Psychology: Human Perception and Performance, 35(6), 1738-1754. https://doi.org/10.1037/a0016472
Pantle, A. J., Gallogly, D. P., & Piehler, O. C. (2000). Direction biasing by brief apparent motion stimuli. Vision Research, 40(15), 1979-1991. https://doi.org/10.1016/s0042-6989(00)00071-7
Peng, Y., Lee, H., Shu, T., & Lu, H. (2021). Exploring biological motion perception in two-stream convolutional neural networks. Vision Research, 178, 28-40. https://doi.org/10.1016/j.visres.2020.09.005
Pollick, F. E., Lestou, V., Ryu, J., & Cho, S. B. (2002). Estimating the efficiency of recognizing gender and affect from biological motion. Vision Research, 42(20), 2345-2355. https://doi.org/10.1016/s0042-6989(02)00196-7
Posner, M. I. (1980). Orienting of attention. Quarterly Journal of Experimental Psychology, 32(1), 3-25. https://doi.org/10.1080/00335558008248231
Ristic, J., Friesen, C. K., & Kingstone, A. (2002). Are eyes special? It depends on how you look at it. Psychonomic Bulletin & Review, 9(3), 507-513. https://doi.org/10.3758/BF03196306
Ristic, J., Wright, A., & Kingstone, A. (2007). Attentional control and reflexive orienting to gaze and arrow cues. Psychonomic Bulletin & Review, 14(5), 964-969. https://doi.org/10.3758/BF03194129
Roche, L., Hernandez, N., Blanc, R., Bonnet-Brilhault, F., Centelles, L., Schmitz, C., & Martineau, J. (2013). Discrimination between biological motion with and without social intention: A pilot study using visual scanning in healthy adults. International Journal of Psychophysiology, 88(1), 47-54. https://doi.org/10.1016/j.ijpsycho.2013.01.009
Roether, C. L., Omlor, L., Christensen, A., & Giese, M. A. (2009). Critical features for the perception of emotion from gait. Journal of Vision, 9(6), 15. https://doi.org/10.1167/9.6.15
Rosa-Salva, O., Grassi, M., Lorenzi, E., Regolin, L., & Vallortigara, G. (2016). Spontaneous preference for visual cues of animacy in naïve domestic chicks: The case of speed changes. Cognition, 157, 49-60. https://doi.org/10.1016/j.cognition.2016.08.014
Rugani, R., Kelly, D. M., Szelest, I., Regolin, L., & Vallortigara, G. (2010). Is it only humans that count from left to right? Biology Letters, 6(3), 290-292. https://doi.org/10.1098/rsbl.2009.0960
Rugani, R., Rosa Salva, O., Regolin, L., & Vallortigara, G. (2015). Brain asymmetry modulates perception of biological motion in newborn chicks (Gallus gallus). Behavioural Brain Research, 290, 1-7. https://doi.org/10.1016/j.bbr.2015.04.032
Rugani, R., Vallortigara, G., Priftis, K., & Regolin, L. (2015). Number-space mapping in the newborn chick resembles humans' mental number line. Science, 347(6221), 534-536. https://doi.org/10.1126/science.aaa1379
Sarangi, V., Pelah, A., Hahn, W. E., & Barenholtz, E. (2020). Gender perception from gait: A comparison between biological, biomimetic and non-biomimetic learning paradigms. Frontiers in Human Neuroscience, 14, 320. https://doi.org/10.3389/fnhum.2020.00320
Shi, J., Weng, X., He, S., & Jiang, Y. (2010). Biological motion cues trigger reflexive attentional orienting. Cognition, 117(3), 348-354. https://doi.org/10.1016/j.cognition.2010.09.001
Shim, W. M., & Cavanagh, P. (2006). Bi-directional illusory position shifts toward the end point of apparent motion. Vision Research, 46(19), 3214-3222. https://doi.org/10.1016/j.visres.2006.04.001
Stauder, J. E. A., Bosch, C. P. A., & Nuij, H. A. M. (2011). Atypical visual orienting to eye gaze and arrow cues in children with high functioning autism Spectrum disorder. Research in Autism Spectrum Disorders, 5(2), 742-748. https://doi.org/10.1016/j.rasd.2010.08.008
Sun, Y., Wang, X., Huang, Y., Ji, H., & Ding, X. (2022). Biological motion gains preferential access to awareness during continuous flash suppression: Local biological motion matters. Journal of Experimental Psychology: General, 151(2), 309-320. https://doi.org/10.1037/xge0001078
Takahashi, K., Fukuda, H., Ikeda, H., Doi, H., Watanabe, K., Ueda, K., & Shinohara, K. (2011). Roles of the upper and lower bodies in direction discrimination of point-light walkers. Journal of Vision, 11(14), 8. https://doi.org/10.1167/11.14.8
Thompson, B., Hansen, B. C., Hess, R. F., & Troje, N. F. (2007). Peripheral vision: Good for biological motion, bad for signal noise segregation? Journal of Vision, 7(10), 12. https://doi.org/10.1167/7.10.12
Thornton, I. M., & Vuong, Q. C. (2004). Incidental processing of biological motion. Current Biology, 14(12), 1084-1089. https://doi.org/10.1016/j.cub.2004.06.025
Thornton, I. M., Vuong, Q. C., & Bülthoff, H. H. (2003). A chimeric point-light walker. Perception, 32(3), 377-383. https://doi.org/10.1068/p5010
Tipples, J. (2002). Eye gaze is not unique: Automatic orienting in response to uninformative arrows. Psychonomic Bulletin & Review, 9(2), 314-318. https://doi.org/10.3758/BF03196287
Tipples, J. (2008). Orienting to counterpredictive gaze and arrow cues. Perception & Psychophysics, 70(1), 77-87. https://doi.org/10.3758/pp.70.1.77
Troje, N. F. (2003). Gender and attractiveness from biological motion. Journal of Vision, 3(9), 86. https://doi.org/10.1167/3.9.86
Troje, N. F., & Westhoff, C. (2006). The inversion effect in biological motion perception: Evidence for a "life detector"? Current Biology, 16(8), 821-824. https://doi.org/10.1016/j.cub.2006.03.022
Vallortigara, G. (2018). Comparative cognition of number and space: The case of geometry and of the mental number line. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 373(1740), 20170120. https://doi.org/10.1098/rstb.2017.0120
Vallortigara, G. (2021). Born knowing: Imprinting and the origins of knowledge. The MIT Press.
Vallortigara, G., & Regolin, L. (2006). Gravity bias in the interpretation of biological motion by inexperienced chicks. Current Biology, 16(8), 279-280. https://doi.org/10.1016/j.cub.2006.03.052
Vallortigara, G., Regolin, L., & Marconato, F. (2005). Visually inexperienced chicks exhibit spontaneous preference for biological motion patterns. PLoS Biology, 3(7), e208. https://doi.org/10.1371/journal.pbio.0030208
van Boxtel, J. J. A., Peng, Y., Su, J., & Lu, H. (2017). Individual differences in high-level biological motion tasks correlate with autistic traits. Vision Research, 141, 136-144. https://doi.org/10.1016/j.visres.2016.11.005
Vangeneugden, J., Vancleef, K., Jaeggli, T., VanGool, L., & Vogels, R. (2009). Discrimination of locomotion direction in impoverished displays of walkers by macaque monkeys. Journal of Vision, 10(4), 22. https://doi.org/10.1167/10.4.22
Vanrie, J., & Verfaillie, K. (2004). Perception of biological motion: A stimulus set of human point-light actions. Behavior Research Methods, Instruments, & Computers, 36(4), 625-629. https://doi.org/10.3758/BF03206542
Vlamings, P. H., Stauder, J. E., van Son, I. A., & Mottron, L. (2005). Atypical visual orienting to gaze- and arrow-cues in adults with high functioning autism. Journal of Autism and Developmental Disorders, 35(3), 267-277. https://doi.org/10.1007/s10803-005-3289-y
Wang, L., & Jiang, Y. (2012). Life motion signals lengthen perceived temporal duration. Proceedings of the National Academy of Sciences of the United States of America, 109(11), 673-677. https://doi.org/10.1073/pnas.1115515109
Wang, L., Wang, Y., Xu, Q., Liu, D., Ji, H., Yu, Y., Hu, Z., Yuan, P., & Jiang, Y. (2020). Heritability of reflexive social attention triggered by eye gaze and walking direction: Common and unique genetic underpinnings. Psychological Medicine, 50(3), 475-483. https://doi.org/10.1017/S003329171900031X
Wang, L., Yang, X., Shi, J., & Jiang, Y. (2014). The feet have it: Local biological motion cues trigger reflexive attentional orienting in the brain. NeuroImage, 84, 217-224. https://doi.org/10.1016/j.neuroimage.2013.08.041
Wang, L., Zhang, K., He, S., & Jiang, Y. (2010). Searching for life motion signals. Visual search asymmetry in local but not global biological-motion processing. Psychological Science, 21(8), 1083-1089. https://doi.org/10.1177/0956797610376072
Wang, Y., Wang, L., Xu, Q., Liu, D., Chen, L., Troje, N. F., He, S., & Jiang, Y. (2018). Heritable aspects of biological motion perception and its covariation with autistic traits. Proceedings of the National Academy of Sciences of the United States of America, 115(8), 1937-1942. https://doi.org/10.1073/pnas.1714655115
Wang, Y., Zhang, X., Wang, C., Huang, W., Xu, Q., Liu, D., Zhou, W., Chen, S., & Jiang, Y. (2022). Modulation of biological motion perception in humans by gravity. Nature Communications, 13(1), 2765. https://doi.org/10.1038/s41467-022-30347-y
Watanabe, S., Miki, K., & Kakigi, R. (2002). Gaze direction affects face perception in humans. Neuroscience Letters, 325(3), 163-166. https://doi.org/10.1016/s0304-3940(02)00257-4
Watson, A. B. (1986). Apparent motion occurs only between similar spatial frequencies. Vision Research, 26(10), 1727-1730. https://doi.org/10.1016/0042-6989(86)90059-3
Wohlschläger, A. (2000). Visual motion priming by invisible actions. Vision Research, 40(8), 925-930. https://doi.org/10.1016/s0042-6989(99)00239-4
Yabe, Y., & Taga, G. (2008). Treadmill locomotion captures visual perception of apparent motion. Experimental Brain Research, 191(4), 487-494. https://doi.org/10.1007/s00221-008-1541-3
Yamada, Y., Kawabe, T., & Miura, K. (2008). Dynamic gaze cueing alters the perceived direction of apparent motion. Psychologia, 51(3), 206-213. https://doi.org/10.2117/psysoc.2008.206
Yu, Y., Ji, H., Wang, L., & Jiang, Y. (2020). Cross-modal social attention triggered by biological motion cues. Journal of Vision, 20(10), 21. https://doi.org/10.1167/jov.20.10.21
Zhang, Q. F., Wen, Y., Zhang, D., She, L., Wu, J. Y., Dan, Y., & Poo, M. M. (2012). Priming with real motion biases visual cortical response to bistable apparent motion. Proceedings of the National Academy of Sciences of the United States of America, 109(50), 20691-20696. https://doi.org/10.1073/pnas.1218654109
Zhang, Y., Wang, L., & Jiang, Y. (2021). My own face looks larger than yours: A self-induced illusory size perception. Cognition, 212, 104718. https://doi.org/10.1016/j.cognition.2021.104718
Zhao, J., Wang, L., Wang, Y., Weng, X., Li, S., & Jiang, Y. (2014). Developmental tuning of reflexive attentional effect to biological motion cues. Scientific Reports, 4, 5558. https://doi.org/10.1038/srep05558