Image Quality Improvement in Deep Learning Image Reconstruction of Head Computed Tomography Examination.
deep learning reconstruction
deep neural network
head CT
image quality improvement
true fidelity
Journal
Tomography (Ann Arbor, Mich.)
ISSN: 2379-139X
Titre abrégé: Tomography
Pays: Switzerland
ID NLM: 101671170
Informations de publication
Date de publication:
09 08 2023
09 08 2023
Historique:
received:
10
05
2023
revised:
14
07
2023
accepted:
19
07
2023
medline:
28
8
2023
pubmed:
25
8
2023
entrez:
25
8
2023
Statut:
epublish
Résumé
In this study, we assess image quality in computed tomography scans reconstructed via DLIR (Deep Learning Image Reconstruction) and compare it with iterative reconstruction ASIR-V (Adaptive Statistical Iterative Reconstruction) in CT (computed tomography) scans of the head. The CT scans of 109 patients were subjected to both objective and subjective evaluation of image quality. The objective evaluation was based on the SNR (signal-to-noise ratio) and CNR (contrast-to-noise ratio) of the brain's gray and white matter. The regions of interest for our study were set in the BGA (basal ganglia area) and PCF (posterior cranial fossa). Simultaneously, a subjective assessment of image quality, based on brain structure visibility, was conducted by experienced radiologists. In the assessed scans, we obtained up to a 54% increase in SNR for gray matter and a 60% increase for white matter using DLIR in comparison to ASIR-V. Moreover, we achieved a CNR increment of 58% in the BGA structures and 50% in the PCF. In the subjective assessment of the obtained images, DLIR had a mean rating score of 2.8, compared to the mean score of 2.6 for ASIR-V images. In conclusion, DLIR shows improved image quality compared to the standard iterative reconstruction of CT images of the head.
Identifiants
pubmed: 37624111
pii: tomography9040118
doi: 10.3390/tomography9040118
pmc: PMC10459011
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1485-1493Références
Emerg Radiol. 2022 Apr;29(2):339-352
pubmed: 34984574
J Comput Assist Tomogr. 1991 May-Jun;15(3):381-6
pubmed: 2026796
AJR Am J Roentgenol. 2010 Jan;194(1):191-9
pubmed: 20028923
Eur Radiol. 2020 Jul;30(7):3951-3959
pubmed: 32100091
Sci Rep. 2022 May 27;12(1):8899
pubmed: 35624113
BMC Med Imaging. 2021 Jul 8;21(1):108
pubmed: 34238229
Radiographics. 1992 Sep;12(5):1041-6
pubmed: 1529128
Rofo. 2016 Feb;188(2):155-62
pubmed: 26529264
J Cardiovasc Comput Tomogr. 2009 Nov-Dec;3(6):403-8
pubmed: 19717355
AJR Am J Roentgenol. 2020 Mar;214(3):566-573
pubmed: 31967501
Eur Radiol. 2023 May;33(5):3253-3265
pubmed: 36973431
Neuroradiology. 2016 Jul;58(7):649-55
pubmed: 26961306
Radiographics. 2019 Oct;39(6):1571-1595
pubmed: 31589576
J Korean Soc Radiol. 2023 Jan;84(1):240-252
pubmed: 36818715
Clin Radiol. 2021 Jun;76(6):407-415
pubmed: 33637310
Neuroradiology. 2021 Jun;63(6):905-912
pubmed: 33037503
AJR Am J Roentgenol. 2000 Nov;175(5):1361-6
pubmed: 11044042
AJR Am J Roentgenol. 2020 Jul;215(1):50-57
pubmed: 32286872