Who wins the combat, CAR or TCR?


Journal

Leukemia
ISSN: 1476-5551
Titre abrégé: Leukemia
Pays: England
ID NLM: 8704895

Informations de publication

Date de publication:
Oct 2023
Historique:
received: 07 03 2023
accepted: 17 07 2023
revised: 04 07 2023
medline: 4 12 2023
pubmed: 26 8 2023
entrez: 25 8 2023
Statut: ppublish

Résumé

Chimeric antigen receptor T (CAR-T) cell therapy has drawn increasing attention over the last few decades given its remarkable effectiveness and breakthroughs in treating B cell hematological malignancies. Even though CAR-T cell therapy has outstanding clinical successes, most treated patients still relapse after infusion. CARs are derived from the T cell receptor (TCR) complex and co-stimulatory molecules associated with T cell activation; however, the similarities and differences between CARs and endogenous TCRs regarding their sensitivity, signaling pathway, killing mechanisms, and performance are still not fully understood. In this review, we discuss the parallel comparisons between CARs and TCRs from various aspects and how these current findings might provide novel insights and contribute to improvement of CAR-T cell therapy efficacy.

Identifiants

pubmed: 37626090
doi: 10.1038/s41375-023-01976-z
pii: 10.1038/s41375-023-01976-z
doi:

Substances chimiques

Receptors, Chimeric Antigen 0
Receptors, Antigen, T-Cell 0

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

1953-1962

Subventions

Organisme : U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
ID : R37CA266344
Organisme : U.S. Department of Defense (United States Department of Defense)
ID : CA201127

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Sakemura R, Cox MJ, Hefazi M, Siegler EL, Kenderian SS. Resistance to cart cell therapy: Lessons learned from the treatment of hematological malignancies. Leuk lymphoma. 2021;62:2052–63.
pubmed: 33682608 doi: 10.1080/10428194.2021.1894648
June CH, O’Connor RS, Kawalekar OU, Ghassemi S, Milone MC. Car T cell immunotherapy for human cancer. Science. 2018;359:1361–5.
pubmed: 29567707 doi: 10.1126/science.aar6711
Benmebarek M-R, Karches C, Cadilha B, Lesch S, Endres S, Kobold S. Killing mechanisms of chimeric antigen receptor (CAR) T cells. Int J Mol Sci. 2019;20:1283.
pubmed: 30875739 pmcid: 6470706 doi: 10.3390/ijms20061283
Center for Drug Evaluation and Research. FDA D.I.S.C.O. burst: Approval of ABECMA (idacabtagene vicleucel) [Internet]. U.S. Food and Drug Administration. FDA; 2021 [cited 2021Oct31]. Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-disco-burst-edition-fda-approval-abecma-idecabtagene-vicleucel-first-fda-approved-cell-based
Baulu E, Gardet C, Chuvin N, Depil S. TCR-engineered T cell therapy in solid tumors: State of the art and Perspectives. Sci Adv. 2023;9:eadf3700.
Sadelain M, Brentjens R, Rivière I. The basic principles of chimeric antigen receptor design. Cancer Discov. 2013;3:388–98.
pubmed: 23550147 pmcid: 3667586 doi: 10.1158/2159-8290.CD-12-0548
Faroudi M, Utzny C, Salio M, Cerundolo V, Guiraud M, Müller S, et al. Lytic versus stimulatory synapse in cytotoxic T lymphocyte/target cell interaction: Manifestation of a dual activation threshold. Proc Natl Acad Sci. 2003;100:14145–50.
pubmed: 14610278 pmcid: 283560 doi: 10.1073/pnas.2334336100
Sykulev Y, Joo M, Vturina I, Tsomides TJ, Eisen HN. Evidence that a single peptide–MHC complex on a target cell can elicit a cytolytic T cell response. Immunity. 1996;4:565–71.
pubmed: 8673703 doi: 10.1016/S1074-7613(00)80483-5
Jensen MC, Riddell SR. Design and implementation of adoptive therapy with chimeric antigen receptor-modified T cells. Immunol Rev. 2013;257:127–44.
doi: 10.1111/imr.12139
Purbhoo MA, Irvine DJ, Huppa JB, Davis MM. T cell killing does not require the formation of a stable mature immunological synapse. Nat Immunol. 2004;5:524–30.
pubmed: 15048111 doi: 10.1038/ni1058
Valitutti S, Müller S, Dessing M, Lanzavecchia A. Different responses are elicited in cytotoxic T lymphocytes by different levels of T cell receptor occupancy. J Exp Med. 1996;183:1917–21.
pubmed: 8666949 doi: 10.1084/jem.183.4.1917
Porgador A, Yewdell JW, Deng Y, Bennink JR, Germain RN. Localization, quantitation, and in situ detection of specific peptide–MHC class I complexes using a monoclonal antibody. Immunity. 1997;6:715–26.
pubmed: 9208844 doi: 10.1016/S1074-7613(00)80447-1
Neelapu SS, Locke FL, Bartlett NL, Lekakis LJ, Miklos DB, Jacobson CA, et al. Axicabtagene CILOLEUCEL car T-cell therapy in refractory large B-cell lymphoma. N Engl J Med. 2017;377:2531–44.
pubmed: 29226797 pmcid: 5882485 doi: 10.1056/NEJMoa1707447
Watanabe K, Terakura S, Martens AC, van Meerten T, Uchiyama S, Imai M, et al. Target antigen density governs the efficacy of anti–CD20-CD28-CD3 ζ chimeric antigen receptor–modified effector CD8+ T cells. J Immunol. 2015;194:911–20.
pubmed: 25520398 doi: 10.4049/jimmunol.1402346
Hudecek M, Lupo-Stanghellini M-T, Kosasih PL, Sommermeyer D, Jensen MC, Rader C, et al. Receptor affinity and extracellular domain modifications affect tumor recognition by ROR1-specific chimeric antigen receptor T cells. Clin Cancer Res. 2013;19:3153–64.
pubmed: 23620405 pmcid: 3804130 doi: 10.1158/1078-0432.CCR-13-0330
Walker AJ, Majzner RG, Zhang L, Wanhainen K, Long AH, Nguyen SM, et al. Tumor antigen and receptor densities regulate efficacy of a chimeric antigen receptor targeting anaplastic lymphoma kinase. Mol Ther. 2017;25:2189–201.
pubmed: 28676342 pmcid: 5589087 doi: 10.1016/j.ymthe.2017.06.008
Lindner SE, Johnson SM, Brown CE, Wang LD. Chimeric antigen receptor signaling: Functional consequences and design implications. Sci Adv. 2020;6:eaaz3223.
Foote J, Eisen HN. Breaking the affinity ceiling for antibodies and T cell receptors. Proc Natl Acad Sci. 2000;97:10679–81.
pubmed: 11005851 pmcid: 34043 doi: 10.1073/pnas.97.20.10679
Harris DT, Hager MV, Smith SN, Cai Q, Stone JD, Kruger P, et al. Comparison of T cell activities mediated by human tcrs and cars that use the same recognition domains. J Immunol. 2018;200:1088–100.
pubmed: 29288199 doi: 10.4049/jimmunol.1700236
Stone JD, Harris DT, Soto CM, Chervin AS, Aggen DH, Roy EJ, et al. A novel T cell receptor single-chain signaling complex mediates antigen-specific T cell activity and tumor control. Cancer Immunol, Immunother. 2014;63:1163–76.
pubmed: 25082071 doi: 10.1007/s00262-014-1586-z
Oren R, Hod-Marco M, Haus-Cohen M, Thomas S, Blat D, Duvshani N, et al. Functional comparison of engineered T cells carrying a native TCR versus TCR-like antibody–based chimeric antigen receptors indicates affinity/avidity thresholds. J Immunol. 2014;193:5733–43.
pubmed: 25362181 doi: 10.4049/jimmunol.1301769
Isakov N. Immunoreceptor tyrosine-based activation motif (ITAM), a unique module linking antigen and Fc receptors to their signaling cascades. J Leukoc Biol. 1997;61:6–16.
pubmed: 9000531 doi: 10.1002/jlb.61.1.6
Love PE, Hayes SM. ITAM-mediated signaling by the T-cell antigen receptor. Cold Spring Harb Perspect Biol. 2010;2:a002485.
Underhill DM, Goodridge HS. The Many Faces of Itams. Trends Immunol. 2007;28:66–73.
pubmed: 17197236 doi: 10.1016/j.it.2006.12.004
GEISLER C, LARSEN JK, PLESNER T. Identification of alphabeta and gammadelta T cell receptor-positive cells. Scand J Immunol. 1988;28:741–5.
pubmed: 3266025 doi: 10.1111/j.1365-3083.1988.tb01508.x
James JR. Tuning itam multiplicity on T cell receptors can control potency and selectivity to ligand density. Sci Signal. 2018;11:eaan1088.
Hwang J-R, Byeon Y, Kim D, Park S-G. Recent insights of T cell receptor-mediated signaling pathways for T cell activation and development. Exp Mol Med. 2020;52:750–61.
pubmed: 32439954 pmcid: 7272404 doi: 10.1038/s12276-020-0435-8
Hedrick SM, Cohen DI, Nielsen EA, Davis MM. Isolation of cdna clones encoding T cell-specific membrane-associated proteins. Nature. 1984;308:149–53.
pubmed: 6199676 doi: 10.1038/308149a0
Malissen M, Minard K, Mjolsness S, Kronenberg M, Goverman J, Hunkapiller T, et al. Mouse T cell antigen receptor: Structure and organization of constant and joining gene segments encoding the β polypeptide. Cell. 1984;37:1101–10.
pubmed: 6611207 doi: 10.1016/0092-8674(84)90444-6
Borst J, Coligan JE, Oettgen H, Pessano S, Malin R, Terhorst C. The δ- and ε-chains of the human T3/T-cell receptor complex are distinct polypeptides. Nature. 1984;312:455–8.
pubmed: 6239105 doi: 10.1038/312455a0
Holst J, Wang H, Eder KD, Workman CJ, Boyd KL, Baquet Z, et al. Scalable signaling mediated by T cell antigen receptor–CD3 itams ensures effective negative selection and prevents autoimmunity. Nat Immunol. 2008;9:658–66.
pubmed: 18469818 doi: 10.1038/ni.1611
Guy CS, Vignali KM, Temirov J, Bettini ML, Overacre AE, Smeltzer M, et al. Distinct TCR signaling pathways drive proliferation and cytokine production in T cells. Nat Immunol. 2013;14:262–70.
pubmed: 23377202 pmcid: 3577985 doi: 10.1038/ni.2538
Salter AI, Rajan A, Kennedy JJ, Ivey RG, Shelby SA, Leung I, et al. Comparative analysis of TCR and car signaling informs car designs with superior antigen sensitivity and in vivo function. Sci Signal. 2021;14.
Soares H, Lasserre R, Alcover A. Orchestrating cytoskeleton and intracellular vesicle traffic to build functional immunological synapses. Immunol Rev. 2013;256:118–32.
pubmed: 24117817 doi: 10.1111/imr.12110
Alarcón B, Mestre D, Martínez-Martín N. The immunological synapse: A cause or consequence of T-cell receptor triggering? Immunology 2011;133:420–5.
pubmed: 21631496 pmcid: 3143353 doi: 10.1111/j.1365-2567.2011.03458.x
Li R, Ma C, Cai H, Chen W. The car T‐Cell Mechanoimmunology at a glance. Advanced. Science. 2020;7:2002628.
Watanabe K, Kuramitsu S, Posey AD, June CH Expanding the therapeutic window for car T cell therapy in solid tumors: The knowns and unknowns of Car T cell biology. Front Immunol. 2018;9:2486.
van der Merwe PA, Davis SJ, Shaw AS, Dustin ML. Cytoskeletal polarization and redistribution of cell-surface molecules during T cell antigen recognition. Semin Immunol. 2000;12:5–21.
doi: 10.1006/smim.2000.0203
Xiong W, Chen Y, Kang X, Chen Z, Zheng P, Hsu Y-H, et al. Immunological Synapse predicts effectiveness of chimeric antigen receptor cells. Mol Ther. 2018;26:963–75.
pubmed: 29503199 pmcid: 6080133 doi: 10.1016/j.ymthe.2018.01.020
Davenport AJ, Cross RS, Watson KA, Liao Y, Shi W, Prince HM, et al. Chimeric antigen receptor T cells form nonclassical and potent immune synapses driving rapid cytotoxicity. Proc Natl Acad Sci. 2018;115:E2068–76.
Saito T, Germain RN. Predictable acquisition of a new MHC recognition specificity following expression of a transfected T-cell receptor β-chain gene. Nature. 1987;329:256–9.
pubmed: 2442621 doi: 10.1038/329256a0
DembiĆ Z, Haas W, Weiss S, McCubrey J, Kiefer H, von Boehmer H, et al. Transfer of specificity by murine α and β T-cell receptor genes. Nature. 1986;320:232–8.
pubmed: 2421164 doi: 10.1038/320232a0
Samelson LE, Patel MD, Weissman AM, Harford JB, Klausner RD. Antigen activation of murine T cells induces tyrosine phosphorylation of a polypeptide associated with the T cell antigen receptor. Cell. 1986;46:1083–90.
pubmed: 2428504 doi: 10.1016/0092-8674(86)90708-7
Nolz JC, Gomez TS, Zhu P, Li S, Medeiros RB, Shimizu Y, et al. The wave2 complex regulates actin cytoskeletal reorganization and CRAC-mediated calcium entry during T cell activation. Curr Biol. 2006;16:24–34.
pubmed: 16401421 pmcid: 1779663 doi: 10.1016/j.cub.2005.11.036
Le Floc’h A, Tanaka Y, Bantilan NS, Voisinne G, Altan-Bonnet G, Fukui Y, et al. Annular PIP3 accumulation controls actin architecture and modulates cytotoxicity at the immunological synapse. J Exp Med. 2013;210:2721–37.
pubmed: 24190432 pmcid: 3832928 doi: 10.1084/jem.20131324
Blumenthal D, Burkhardt JK. Multiple actin networks coordinate mechanotransduction at the immunological synapse. J. Cell Biol. 2020;219:e201911058.
Yi J, Wu XS, Crites T, Hammer JA. Actin retrograde flow and Actomyosin II arc contraction drive receptor cluster dynamics at the immunological synapse in Jurkat T cells. Mol Biol Cell. 2012;23:834–52.
pubmed: 22219382 pmcid: 3290643 doi: 10.1091/mbc.e11-08-0731
Stern LJ, Aivazian D. Nat Struct Biol. 2000;7:1023–6.
pubmed: 11062556 doi: 10.1038/80930
Lee MS, Glassman CR, Deshpande NR, Badgandi HB, Parrish HL, Uttamapinant C, et al. A mechanical switch couples T cell receptor triggering to the cytoplasmic juxtamembrane regions of CD3ζζ. Immunity. 2015;43:227–39.
pubmed: 26231119 pmcid: 4545397 doi: 10.1016/j.immuni.2015.06.018
Swamy M, Beck-Garcia K, Beck-Garcia E, Hartl FA, Morath A, Yousefi OS, et al. A cholesterol-based allostery model of T cell receptor phosphorylation. Immunity. 2016;44:1091–101.
pubmed: 27192576 doi: 10.1016/j.immuni.2016.04.011
Das DK, Feng Y, Mallis RJ, Li X, Keskin DB, Hussey RE, et al. Force-dependent transition in the T-cell receptor β-subunit allosterically regulates peptide discrimination and PMHC bond lifetime. Proc Natl Acad Sci. 2015;112:1517–22.
pubmed: 25605925 pmcid: 4321250 doi: 10.1073/pnas.1424829112
Xu C, Gagnon E, Call ME, Schnell JR, Schwieters CD, Carman CV, et al. Regulation of T cell receptor activation by dynamic membrane binding of the cd3ɛ cytoplasmic tyrosine-based motif. Cell. 2008;135:702–13.
pubmed: 19013279 pmcid: 2597348 doi: 10.1016/j.cell.2008.09.044
Courtney AH, Lo W-L, Weiss A. TCR signaling: Mechanisms of initiation and propagation. Trends Biochemical Sci. 2018;43:108–23.
doi: 10.1016/j.tibs.2017.11.008
Joseph N, Reicher B, Barda-Saad M. The calcium feedback loop and T cell activation: How Cytoskeleton Networks Control intracellular calcium flux. Biochimica et Biophysica Acta (BBA) - Biomembranes. 2014;1838:557–68.
pubmed: 23860253 doi: 10.1016/j.bbamem.2013.07.009
Schmidt J, Dojcinovic D, Guillaume P, Luescher I. Analysis, isolation, and activation of antigen-specific CD4+ and CD8+ T cells by soluble MHC-peptide complexes. Front. Immunol. 2013;4:218.
Gacerez AT, Arellano B, Sentman CL. How chimeric antigen receptor design affects adoptive T cell therapy. J Cell Physiol. 2016;231:2590–8.
pubmed: 27163336 pmcid: 4993661 doi: 10.1002/jcp.25419
Bridgeman JS, Hawkins RE, Bagley S, Blaylock M, Holland M, Gilham DE. The optimal antigen response of chimeric antigen receptors harboring the CD3ζ transmembrane domain is dependent upon incorporation of the receptor into the endogenous TCR/CD3 complex. J Immunol. 2010;184:6938–49.
pubmed: 20483753 doi: 10.4049/jimmunol.0901766
Chang ZNL, Lorenzini MH, Chen X, Tran U, Bangayan NJ, Chen YY. Rewiring T-cell responses to soluble factors with chimeric antigen receptors. Nat Chem Biol. 2018;14:317–24.
pubmed: 29377003 pmcid: 6035732 doi: 10.1038/nchembio.2565
Lindner SE, Johnson SM, Brown CE, Wang LD. Chimeric antigen receptor signaling: Functional consequences and design implications. Science Advances. 2020;6:eaaz3223.
Salter AI, Ivey RG, Kennedy JJ, Voillet V, Rajan A, Alderman EJ, et al. Phosphoproteomic analysis of chimeric antigen receptor signaling reveals kinetic and quantitative differences that affect cell function. Sci Signal. 2018;11:eaat6753.
O’Leary MC, Lu X, Huang Y, Lin X, Mahmood I, Przepiorka D, et al. FDA approval summary: Tisagenlecleucel for treatment of patients with relapsed or refractory B-cell precursor Acute lymphoblastic leukemia. Clin Cancer Res. 2019;25:1142–6.
pubmed: 30309857 doi: 10.1158/1078-0432.CCR-18-2035
Meiraz A, Garber OG, Harari S, Hassin D, Berke G. Switch from perforin-expressing to perforin-deficient CD8+T cells accounts for two distinct types of effector cytotoxic T lymphocytesin vivo. Immunology. 2009;128:69–82.
pubmed: 19689737 pmcid: 2747140 doi: 10.1111/j.1365-2567.2009.03072.x
Cullen SP, Martin SJ. Mechanisms of granule-dependent killing. Cell Death Differ. 2007;15:251–62.
pubmed: 17975553 doi: 10.1038/sj.cdd.4402244
Stinchcombe JC, Majorovits E, Bossi G, Fuller S, Griffiths GM. Centrosome polarization delivers secretory granules to the immunological synapse. Nature. 2006;443:462–5.
pubmed: 17006514 doi: 10.1038/nature05071
Hong LK, Chen Y, Smith CC, Montgomery SA, Vincent BG, Dotti G, et al. CD30-redirected chimeric antigen receptor T cells target CD30+ and CD30− embryonal carcinoma via antigen-dependent and FAS/FASL interactions. Cancer Immunol Res. 2018;6:1274–87.
pubmed: 30087115 pmcid: 7590161 doi: 10.1158/2326-6066.CIR-18-0065
Davenport AJ, Jenkins MR, Cross RS, Yong CS, Prince HM, Ritchie DS, et al. Car-T cells inflict sequential killing of multiple tumor target cells. Cancer Immunol Res. 2015;3:483–94.
pubmed: 25711536 doi: 10.1158/2326-6066.CIR-15-0048
Jenkins MR, Rudd-Schmidt JA, Lopez JA, Ramsbottom KM, Mannering SI, Andrews DM, et al. Failed CTL/Nk cell killing and cytokine hypersecretion are directly linked through prolonged synapse time. J Exp Med. 2015;212:307–17.
pubmed: 25732304 pmcid: 4354371 doi: 10.1084/jem.20140964
Benmebarek M-R, Karches C, Cadilha B, Lesch S, Endres S, Kobold S. Killing mechanisms of chimeric antigen receptor (CAR) T cells. Int J Mol Sci. 2019;20:1283.
pubmed: 30875739 pmcid: 6470706 doi: 10.3390/ijms20061283
Riviere I, Gallardo HF, Hagani AB, Sadelain M. Retroviral-mediated gene transfer in primary murine and human T-lymphocytes. Mol Biotechnol. 2000;15:133–42.
pubmed: 10949826 doi: 10.1385/MB:15:2:133
Eyquem J, Mansilla-Soto J, Giavridis T, van der Stegen SJ, Hamieh M, Cunanan KM, et al. Targeting a car to the TRAC locus with CRISPR/cas9 enhances tumour rejection. Nature. 2017;543:113–7.
pubmed: 28225754 pmcid: 5558614 doi: 10.1038/nature21405
Stenger D, Stief TA, Kaeuferle T, Willier S, Rataj F, Schober K, et al. Endogenous TCR promotes in vivo persistence of CD19-car-T cells compared to a CRISPR/Cas9-mediated TCR knockout car. Blood. 2020;136:1407–18.
pubmed: 32483603 doi: 10.1182/blood.2020005185
Wang Z, Li N, Feng K, Chen M, Zhang Y, Liu Y, et al. Phase I study of CAR-T cells with PD-1 and TCR disruption in mesothelin-positive solid tumors. Cell Mol Immunol. 2021;18:2188–98.
pubmed: 34381179 pmcid: 8429583 doi: 10.1038/s41423-021-00749-x
Wachsmann TL, Wouters AK, Remst DF, Hagedoorn RS, Meeuwsen MH, van Diest E, et al. Comparing car and TCR engineered T cell performance as a function of tumor cell exposure. OncoImmunology. 2022;11:2033528.

Auteurs

Kun Yun (K)

T Cell Engineering, Mayo Clinic, Rochester, MN, USA.
Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA.
Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA.

Elizabeth L Siegler (EL)

T Cell Engineering, Mayo Clinic, Rochester, MN, USA.
Division of Hematology, Mayo Clinic, Rochester, MN, USA.

Saad S Kenderian (SS)

T Cell Engineering, Mayo Clinic, Rochester, MN, USA. Kenderian.Saad@mayo.edu.
Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA. Kenderian.Saad@mayo.edu.
Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA. Kenderian.Saad@mayo.edu.
Division of Hematology, Mayo Clinic, Rochester, MN, USA. Kenderian.Saad@mayo.edu.
Department of Immunology, Mayo Clinic, Rochester, MN, USA. Kenderian.Saad@mayo.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH