Impact of H&E Stain Normalization on Deep Learning Models in Cancer Image Classification: Performance, Complexity, and Trade-Offs.
cancer classification
computational complexity
deep learning
image classification
stain normalization
Journal
Cancers
ISSN: 2072-6694
Titre abrégé: Cancers (Basel)
Pays: Switzerland
ID NLM: 101526829
Informations de publication
Date de publication:
17 Aug 2023
17 Aug 2023
Historique:
received:
26
06
2023
revised:
28
07
2023
accepted:
02
08
2023
medline:
26
8
2023
pubmed:
26
8
2023
entrez:
26
8
2023
Statut:
epublish
Résumé
Accurate classification of cancer images plays a crucial role in diagnosis and treatment planning. Deep learning (DL) models have shown promise in achieving high accuracy, but their performance can be influenced by variations in Hematoxylin and Eosin (H&E) staining techniques. In this study, we investigate the impact of H&E stain normalization on the performance of DL models in cancer image classification. We evaluate the performance of VGG19, VGG16, ResNet50, MobileNet, Xception, and InceptionV3 on a dataset of H&E-stained cancer images. Our findings reveal that while VGG16 exhibits strong performance, VGG19 and ResNet50 demonstrate limitations in this context. Notably, stain normalization techniques significantly improve the performance of less complex models such as MobileNet and Xception. These models emerge as competitive alternatives with lower computational complexity and resource requirements and high computational efficiency. The results highlight the importance of optimizing less complex models through stain normalization to achieve accurate and reliable cancer image classification. This research holds tremendous potential for advancing the development of computationally efficient cancer classification systems, ultimately benefiting cancer diagnosis and treatment.
Identifiants
pubmed: 37627172
pii: cancers15164144
doi: 10.3390/cancers15164144
pmc: PMC10452714
pii:
doi:
Types de publication
Journal Article
Langues
eng
Références
J Pathol Inform. 2018 Nov 14;9:38
pubmed: 30607305
IEEE Rev Biomed Eng. 2009;2:147-71
pubmed: 20671804
Med Image Anal. 2016 Oct;33:170-175
pubmed: 27423409
Med Image Anal. 2019 Aug;56:122-139
pubmed: 31226662
JAMA. 2017 Dec 12;318(22):2199-2210
pubmed: 29234806
Front Med. 2020 Aug;14(4):470-487
pubmed: 32728875
Sci Rep. 2022 Sep 16;12(1):15600
pubmed: 36114214
Comput Methods Programs Biomed. 2023 Jun;234:107511
pubmed: 37011426
Diagn Pathol. 2021 Aug 6;16(1):71
pubmed: 34362386
Med Image Anal. 2021 Jan;67:101813
pubmed: 33049577
IEEE Trans Biomed Eng. 2016 Jul;63(7):1455-62
pubmed: 26540668
Comput Intell Neurosci. 2021 Apr 9;2021:5580914
pubmed: 33897774
Diagnostics (Basel). 2023 Jun 05;13(11):
pubmed: 37296828
IEEE Trans Image Process. 2004 Apr;13(4):600-12
pubmed: 15376593
IEEE Trans Med Imaging. 2016 Feb;35(2):404-15
pubmed: 26353368
Sensors (Basel). 2022 Jan 28;22(3):
pubmed: 35161789
J Am Med Inform Assoc. 2013 Nov-Dec;20(6):1099-108
pubmed: 23959844
Nat Med. 2019 Aug;25(8):1301-1309
pubmed: 31308507
J Neurosci Methods. 2022 May 15;374:109579
pubmed: 35364110
J Pathol. 2019 Oct;249(2):143-150
pubmed: 31144302
Med Image Anal. 2017 Dec;42:60-88
pubmed: 28778026