CSF-Glioma: A Causal Segmentation Framework for Accurate Grading and Subregion Identification of Gliomas.
deep learning
explanations
glioma grading
Journal
Bioengineering (Basel, Switzerland)
ISSN: 2306-5354
Titre abrégé: Bioengineering (Basel)
Pays: Switzerland
ID NLM: 101676056
Informations de publication
Date de publication:
26 Jul 2023
26 Jul 2023
Historique:
received:
05
07
2023
revised:
22
07
2023
accepted:
24
07
2023
medline:
26
8
2023
pubmed:
26
8
2023
entrez:
26
8
2023
Statut:
epublish
Résumé
Deep networks have shown strong performance in glioma grading; however, interpreting their decisions remains challenging due to glioma heterogeneity. To address these challenges, the proposed solution is the Causal Segmentation Framework (CSF). This framework aims to accurately predict high- and low-grade gliomas while simultaneously highlighting key subregions. Our framework utilizes a shrinkage segmentation method to identify subregions containing essential decision information. Moreover, we introduce a glioma grading module that combines deep learning and traditional approaches for precise grading. Our proposed model achieves the best performance among all models, with an AUC of 96.14%, an F1 score of 93.74%, an accuracy of 91.04%, a sensitivity of 91.83%, and a specificity of 88.88%. Additionally, our model exhibits efficient resource utilization, completing predictions within 2.31s and occupying only 0.12 GB of memory during the test phase. Furthermore, our approach provides clear and specific visualizations of key subregions, surpassing other methods in terms of interpretability. In conclusion, the Causal Segmentation Framework (CSF) demonstrates its effectiveness at accurately predicting glioma grades and identifying key subregions. The inclusion of causality in the CSF model enhances the reliability and accuracy of preoperative decision-making for gliomas. The interpretable results provided by the CSF model can assist clinicians in their assessment and treatment planning.
Identifiants
pubmed: 37627772
pii: bioengineering10080887
doi: 10.3390/bioengineering10080887
pmc: PMC10451284
pii:
doi:
Types de publication
Journal Article
Langues
eng
Subventions
Organisme : National Natural Science Foundation of China
ID : No. 81871424
Organisme : Natural Science Foundation of Shaanxi Province
ID : No. 2020JZ-28
Organisme : Key Research and development plan of Shaanxi Province
ID : No. 2021SF-192
Organisme : Natural Science Basic Research Program of Shaanxi Province
ID : No. 2023-JC-QN-0704
Références
Asian Pac J Cancer Prev. 2018 Oct 26;19(10):2789-2794
pubmed: 30360607
Sensors (Basel). 2021 Mar 22;21(6):
pubmed: 33810176
Cancers (Basel). 2022 May 25;14(11):
pubmed: 35681603
Med Phys. 2022 Jul;49(7):4419-4429
pubmed: 35366379
Ann Intern Med. 2020 Jan 7;172(1):59-60
pubmed: 31842204
Annu Int Conf IEEE Eng Med Biol Soc. 2015 Aug;2015:699-702
pubmed: 26736358
IEEE Trans Image Process. 2021;30:5875-5888
pubmed: 34156941
Biometrics. 1988 Sep;44(3):837-45
pubmed: 3203132
Comput Biol Med. 2020 Jun;121:103758
pubmed: 32568668
Phys Med Biol. 2013 Jul 7;58(13):R97-129
pubmed: 23743802
Artif Intell Med. 2007 Jun;40(2):87-102
pubmed: 17466495
Neuroimaging Clin N Am. 2020 Nov;30(4):493-503
pubmed: 33038999
Annu Int Conf IEEE Eng Med Biol Soc. 2017 Jul;2017:3081-3084
pubmed: 29060549
IEEE Trans Med Imaging. 2015 Oct;34(10):1993-2024
pubmed: 25494501