Studying Dynamical Characteristics of Oxygen Saturation Variability Signals Using Haar Wavelet.
COVID-19
Haar wavelet
biomedical signal processing
oxygen saturation variability
physiological systems
Journal
Healthcare (Basel, Switzerland)
ISSN: 2227-9032
Titre abrégé: Healthcare (Basel)
Pays: Switzerland
ID NLM: 101666525
Informations de publication
Date de publication:
13 Aug 2023
13 Aug 2023
Historique:
received:
20
06
2023
revised:
02
08
2023
accepted:
11
08
2023
medline:
26
8
2023
pubmed:
26
8
2023
entrez:
26
8
2023
Statut:
epublish
Résumé
An aim of the analysis of biomedical signals such as heart rate variability signals, brain signals, oxygen saturation variability (OSV) signals, etc., is for the design and development of tools to extract information about the underlying complexity of physiological systems, to detect physiological states, monitor health conditions over time, or predict pathological conditions. Entropy-based complexity measures are commonly used to quantify the complexity of biomedical signals; however novel complexity measures need to be explored in the context of biomedical signal classification. In this work, we present a novel technique that used Haar wavelets to analyze the complexity of OSV signals of subjects during COVID-19 infection and after recovery. The data used to evaluate the performance of the proposed algorithms comprised recordings of OSV signals from 44 COVID-19 patients during illness and after recovery. The performance of the proposed technique was compared with four, scale-based entropy measures: multiscale entropy (MSE); multiscale permutation entropy (MPE); multiscale fuzzy entropy (MFE); multiscale amplitude-aware permutation entropy (MAMPE). Preliminary results of the pilot study revealed that the proposed algorithm outperformed MSE, MPE, MFE, and MMAPE in terms of better accuracy and time efficiency for separating during and after recovery the OSV signals of COVID-19 subjects. Further studies are needed to evaluate the potential of the proposed algorithm for large datasets and in the context of other biomedical signal classifications.
Identifiants
pubmed: 37628478
pii: healthcare11162280
doi: 10.3390/healthcare11162280
pmc: PMC10454822
pii:
doi:
Types de publication
Journal Article
Langues
eng
Subventions
Organisme : King Abdulaziz University
ID : IFPRC-213-611-2020
Références
Exp Physiol. 2021 Jan;106(1):151-159
pubmed: 32643311
Am J Physiol Heart Circ Physiol. 2000 Jun;278(6):H2039-49
pubmed: 10843903
Ann Biomed Eng. 2021 Mar;49(3):979-990
pubmed: 33560467
Adv Exp Med Biol. 2017;1028:39-53
pubmed: 29058215
Am J Physiol Heart Circ Physiol. 2011 Jan;300(1):H319-25
pubmed: 21037227
Lancet. 1996 May 11;347(9011):1312-4
pubmed: 8622511
High Alt Med Biol. 2020 Mar;21(1):76-83
pubmed: 32069121
Comput Methods Programs Biomed. 2016 May;128:40-51
pubmed: 27040830
Phys Rev Lett. 2002 Aug 5;89(6):068102
pubmed: 12190613
IEEE Trans Neural Syst Rehabil Eng. 2007 Jun;15(2):266-72
pubmed: 17601197
Front Physiol. 2017 Aug 02;8:555
pubmed: 28824451
Circulation. 2000 Jun 13;101(23):E215-20
pubmed: 10851218
Nature. 1996 Sep 26;383(6598):323-7
pubmed: 8848043
Entropy (Basel). 2020 Feb 20;22(2):
pubmed: 33286013
Phys Rev Lett. 2002 Apr 29;88(17):174102
pubmed: 12005759
IEEE Trans Biomed Eng. 2001 Nov;48(11):1282-91
pubmed: 11686627
Physiol Rep. 2021 Dec;9(23):e15132
pubmed: 34851045
Clin Auton Res. 2015 Jun;25(3):141-51
pubmed: 25820827
J Med Virol. 2021 Mar;93(3):1403-1408
pubmed: 32767684
Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:2278-2281
pubmed: 36085788
Clin Auton Res. 2019 Dec;29(6):603-614
pubmed: 31444591
Eur J Appl Physiol. 2006 Sep;98(1):30-40
pubmed: 16841202
ERJ Open Res. 2023 Jul 17;9(4):
pubmed: 37362883
Physica A. 1998;249:587-93
pubmed: 11541514
Clin Auton Res. 2019 Dec;29(6):555-566
pubmed: 30470943
Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2297-301
pubmed: 11607165
Sci Rep. 2023 Jan 9;13(1):442
pubmed: 36624254
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1994 Feb;49(2):1685-9
pubmed: 9961383
Entropy (Basel). 2021 Jul 19;23(7):
pubmed: 34356459