Color Centers in Hexagonal Boron Nitride.

color center hexagonal boron nitride light emission quantum emitter

Journal

Nanomaterials (Basel, Switzerland)
ISSN: 2079-4991
Titre abrégé: Nanomaterials (Basel)
Pays: Switzerland
ID NLM: 101610216

Informations de publication

Date de publication:
15 Aug 2023
Historique:
received: 14 07 2023
revised: 10 08 2023
accepted: 13 08 2023
medline: 26 8 2023
pubmed: 26 8 2023
entrez: 26 8 2023
Statut: epublish

Résumé

Atomically thin two-dimensional (2D) hexagonal boron nitride (hBN) has emerged as an essential material for the encapsulation layer in van der Waals heterostructures and efficient deep ultraviolet optoelectronics. This is primarily due to its remarkable physical properties and ultrawide bandgap (close to 6 eV, and even larger in some cases) properties. Color centers in hBN refer to intrinsic vacancies and extrinsic impurities within the 2D crystal lattice, which result in distinct optical properties in the ultraviolet (UV) to near-infrared (IR) range. Furthermore, each color center in hBN exhibits a unique emission spectrum and possesses various spin properties. These characteristics open up possibilities for the development of next-generation optoelectronics and quantum information applications, including room-temperature single-photon sources and quantum sensors. Here, we provide a comprehensive overview of the atomic configuration, optical and quantum properties, and different techniques employed for the formation of color centers in hBN. A deep understanding of color centers in hBN allows for advances in the development of next-generation UV optoelectronic applications, solid-state quantum technologies, and nanophotonics by harnessing the exceptional capabilities offered by hBN color centers.

Identifiants

pubmed: 37630929
pii: nano13162344
doi: 10.3390/nano13162344
pmc: PMC10458833
pii:
doi:

Types de publication

Journal Article Review

Langues

eng

Subventions

Organisme : Kyung Hee University
ID : KHU-20181299

Références

Nat Nanotechnol. 2015 Jun;10(6):534-40
pubmed: 25915194
Nano Lett. 2022 Feb 9;22(3):1331-1337
pubmed: 35073101
Nano Lett. 2019 Mar 13;19(3):2121-2127
pubmed: 30768282
ACS Appl Mater Interfaces. 2018 Jul 25;10(29):24886-24891
pubmed: 29882642
Sci Rep. 2019 Apr 10;9(1):5870
pubmed: 30971736
Phys Rev Lett. 2016 Aug 26;117(9):097402
pubmed: 27610882
Chem Soc Rev. 2018 Aug 13;47(16):6342-6369
pubmed: 30043784
Sci Adv. 2021 Feb 17;7(8):
pubmed: 33597249
Nat Commun. 2022 Aug 25;13(1):5000
pubmed: 36008409
Science. 2004 Oct 22;306(5696):666-9
pubmed: 15499015
Nat Commun. 2017 May 22;8:15093
pubmed: 28530249
Nat Mater. 2022 Aug;21(8):896-902
pubmed: 35835818
ACS Nano. 2022 Sep 27;16(9):14254-14261
pubmed: 35981092
Small. 2021 Jun;17(23):e2100693
pubmed: 33960117
Nat Commun. 2022 Feb 1;13(1):618
pubmed: 35105864
Nano Lett. 2022 Aug 24;22(16):6553-6559
pubmed: 35960708
Nat Commun. 2021 Jul 22;12(1):4480
pubmed: 34294695
Nano Lett. 2016 Jul 13;16(7):4317-21
pubmed: 27299915
Nanoscale. 2019 Aug 1;11(30):14362-14371
pubmed: 31332410
Nat Nanotechnol. 2016 Jan;11(1):37-41
pubmed: 26501751
ACS Appl Mater Interfaces. 2022 Sep 14;14(36):41361-41368
pubmed: 36048915
Nano Lett. 2020 Mar 11;20(3):1992-1999
pubmed: 32053384
Nanoscale. 2018 Feb 1;10(5):2267-2274
pubmed: 29319710
Small. 2022 Jan;18(2):e2104805
pubmed: 34837313
Nat Commun. 2017 May 22;8:15053
pubmed: 28530219
Light Sci Appl. 2022 Jun 20;11(1):186
pubmed: 35725815
Nat Commun. 2020 Oct 23;11(1):5359
pubmed: 33097718
Nat Mater. 2004 Jun;3(6):404-9
pubmed: 15156198
Sci Rep. 2021 Jun 10;11(1):12285
pubmed: 34112837
Nat Commun. 2019 Jan 15;10(1):222
pubmed: 30644413
ACS Nano. 2017 Jul 25;11(7):6652-6660
pubmed: 28521091
ACS Omega. 2023 Apr 10;8(16):14641-14647
pubmed: 37125116
ACS Nano. 2021 Aug 24;15(8):13591-13603
pubmed: 34347438
Nat Mater. 2021 Mar;20(3):321-328
pubmed: 33139892
ACS Nano. 2018 Jul 24;12(7):7127-7133
pubmed: 29957923
Nano Lett. 2021 Oct 13;21(19):8182-8189
pubmed: 34606291
Nano Lett. 2021 Apr 28;21(8):3626-3632
pubmed: 33870699
Materials (Basel). 2021 Oct 19;14(20):
pubmed: 34683817
ACS Nano. 2016 Aug 23;10(8):7331-8
pubmed: 27399936
Nat Mater. 2020 May;19(5):540-545
pubmed: 32094496
Nat Commun. 2018 Jul 5;9(1):2623
pubmed: 29976925
Nat Commun. 2021 Jun 18;12(1):3779
pubmed: 34145254
ACS Nano. 2019 Mar 26;13(3):3132-3140
pubmed: 30715854
Sci Adv. 2021 Apr 2;7(14):
pubmed: 33811078
Nat Nanotechnol. 2010 Oct;5(10):722-6
pubmed: 20729834
Nanomaterials (Basel). 2021 May 22;11(6):
pubmed: 34067260
Nanoscale. 2018 May 3;10(17):7957-7965
pubmed: 29682653
J Phys Chem Lett. 2022 Apr 14;13(14):3150-3157
pubmed: 35362989
Nat Mater. 2020 May;19(5):534-539
pubmed: 32094492
Phys Rev Lett. 2010 Sep 24;105(13):136805
pubmed: 21230799
Nat Commun. 2019 Jun 14;10(1):2639
pubmed: 31201328
Science. 2013 Nov 1;342(6158):614-7
pubmed: 24179223

Auteurs

Suk Hyun Kim (SH)

Department of Physics, Kyung Hee University, Seoul 02447, Republic of Korea.
Department of Information Display, Kyung Hee University, Seoul 02447, Republic of Korea.

Kyeong Ho Park (KH)

Department of Physics, Kyung Hee University, Seoul 02447, Republic of Korea.

Young Gie Lee (YG)

Department of Physics, Kyung Hee University, Seoul 02447, Republic of Korea.

Seong Jun Kang (SJ)

Department of Advanced Materials Engineering for Information and Electronics, Kyung Hee University, Yongin 17101, Republic of Korea.

Yongsup Park (Y)

Department of Physics, Kyung Hee University, Seoul 02447, Republic of Korea.
Department of Information Display, Kyung Hee University, Seoul 02447, Republic of Korea.

Young Duck Kim (YD)

Department of Physics, Kyung Hee University, Seoul 02447, Republic of Korea.
Department of Information Display, Kyung Hee University, Seoul 02447, Republic of Korea.

Classifications MeSH