Catalytic ipso-Nitration of Organosilanes Enabled by Electrophilic N-Nitrosaccharin Reagent.

Electrophilic Ipso-Substitution Nitration Organosilanes Selectivity

Journal

Angewandte Chemie (International ed. in English)
ISSN: 1521-3773
Titre abrégé: Angew Chem Int Ed Engl
Pays: Germany
ID NLM: 0370543

Informations de publication

Date de publication:
09 Oct 2023
Historique:
received: 28 07 2023
pubmed: 27 8 2023
medline: 27 8 2023
entrez: 26 8 2023
Statut: ppublish

Résumé

Nitroaromatic compounds represent one of the essential classes of molecules that are widely used as feedstock for the synthesis of intermediates, the preparation of nitro-derived pharmaceuticals, agrochemicals, and materials on both laboratory and industrial scales. We herein disclose the efficient, mild, and catalytic ipso-nitration of organotrimethylsilanes, enabled by an electrophilic N-nitrosaccharin reagent and allows chemoselective nitration under mild reaction conditions, while exhibiting remarkable substrate generality and functional group compatibility. Additionally, the reaction conditions proved to be orthogonal to other common functionalities, allowing programming of molecular complexity via successive transformations or late-stage nitration. Detailed mechanistic investigation by experimental and computational approaches strongly supported a classical electrophilic aromatic substitution (S

Identifiants

pubmed: 37632357
doi: 10.1002/anie.202310851
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e202310851

Subventions

Organisme : Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
ID : PCEFP2_186964
Organisme : Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
ID : TMPFP2_209846

Informations de copyright

© 2023 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.

Références

N. Ono, The nitro group in organic synthesis, John Wiley & Sons Inc, Hoboken, 2001.
 
K. Nepali, H.-Y. Lee, J.-P. Liou, J. Med. Chem. 2019, 62, 2851-2893;
C. Kannigadu, D. David, Curr. Pharm. Des. 2020, 26, 4658-4674;
S. Noriega, J. Cardoso-Ortiz, A. Lopez-Luna, M. D. R. Cuevas-Flores, K. A. F. De La Torre, Pharmaceuticals 2022, 15, 717;
K.-S. Ju, R. E. Parales, Microbiol. Mol. Biol. Rev. 2010, 74, 250-272;
G. Booth, Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2000;
J. P. Agrawal, R. D. Hodgson, Organic Chemistry of Explosives, John Wiley & Sons Inc, Hoboken, 2006.
For selected recent examples, see:
J. Gui, C.-M. Pan, Y. Jin, T. Qin, J. C. Lo, B. J. Lee, S. H. Spergel, M. E. Mertzman, J. W. Pitts, T. E. La Cruz, M. A. Schmidt, N. S. Darvatkar, R. Natarajan, P. Baran, Science 2015, 348, 886-891;
K. Muto, T. Okita, J. Yamaguchi, ACS Catal. 2020, 10, 9856-9871;
X. Guan, H. Zhu, T. Driver, ACS Catal. 2021,11, 12417-12422;
M. Kashihara, Y. Nakao, Acc. Chem. Res. 2021, 54, 2928-2935;
A. Ruffoni, C. Hampton, M. Simonetti, D. Leonori, Nature 2022, 610, 81-86;
T. Patra, T. Wirth, Angew. Chem. Int. Ed. 2022, 61, e202213772;
J. M. Paolillo, A. D. Duke, E. S. Gogarnoiu, D. E. Wise, M. Parasram, J. Am. Chem. Soc. 2023, 145, 2794-2799.
For selected reviews, see:
G. Yan, M. Yang, Org. Biomol. Chem. 2013, 11, 2554-2566;
S. Majedi, S. Majedi, F. Behmagham, Chem. Rev. Lett. 2019, 2, 187-192;
L.-R. Song, Z. Fan, A. Zhang, Org. Biomol. Chem. 2019, 17, 1351-1361;
Y.-E. Qian, L. Zheng, H.-Y. Xiang, H. Yang, Org. Biomol. Chem. 2021, 19, 4835-4851;
S. S. Patel, D. B. Patel, H. D. Patel, ChemistrySelect 2021, 6, 1337-1356.
 
E. D. Hughes, C. K. Ingold, R. I. Reed, Nature 1946, 158, 448-449;
E. S. Halberstadt, E. D. Hughes, C. K. Ingold, Nature 1946, 158, 514-514;
P. M. Esteves, J. W. de M. Carneiro, S. P. Cardoso, A. G. H. Barbosa, K. K. Laali, G. Rasul, G. K. S. Prakash, G. A. Olah, J. Am. Chem. Soc. 2003, 125, 4836-4849;
B. Galabov, D. Nalbantova, P. V. R. Schleyer, H. F. Schaefer, Acc. Chem. Res. 2016, 49, 1191-1199;
M. Liljenberg, J. H. Stenlid, T. Brinck, J. Mol. Model. 2018, 24;
G. A. Olah, S. C. Narang, J. A. Olah, K. Lammertsma, Proc. Natl. Acad. Sci. USA 1982, 79, 4487-4494;
G. Olah, R. Malhotra, S. Narang, Nitration, Methods and Mechanisms, World Scientific, New York, 2003;
S. Patra, I. Mosiagin, R. Giri, D. Katayev, Synthesis 2022, 54, 3432-3472.
For recent organic electrophilic nitrating reagents, see:
R. Calvo, K. Zhang, A. Passera, D. Katayev, Nat. Commun. 2019, 10, 3410;
T. Yang, X. Li, S. Deng, X. Qi, H. Cong, H.-G. Cheng, L. Shi, JACS Au 2022, 2, 2152-2161;
F. Jia, A. Li, X. Hu, Org. Lett. 2023, 25, 4605-4609.
 
S. P. Blum, C. Nickel, L. Schäffer, T. Karakaya, S. R. Waldvogel, ChemSusChem 2021, 14, 4936-4940;
S. Patra, I. Mosiagin, R. Giri, T. Nauser, D. Katayev, Angew. Chem. Int. Ed. 2023, 62, e202300533.
 
K. Zhang, B. Jelier, A. Passera, G. Jeschke, D. Katayev, Chem. Eur. J. 2019, 25, 12929-12939;
K. Zhang, A. Budinská, A. Passera, D. Katayev, Org. Lett. 2020, 22, 2714-2719;
R. Giri, S. Patra, D. Katayev, ChemCatChem 2023, 15, e202201427;
X. Fan, Y. Zhao, L. Liu, H. Wang, Chin. J. Chem. 2023, 41, 1589-1593;
T. Long, L. Liu, Y. Tao, W. Zhang, J. Quan, J. Zheng, J. D. Hegemann, M. Uesugi, W. Yao, H. Tian, H. Wang, Angew. Chem. Int. Ed. 2021, 60, 13414-13422.
 
C. L. Budde, A. Beyer, I. Z. Munir, J. S. Dordick, Y. L. Khmelnitsky, J. Mol. Catal. B 2001, 15, 55-64;
M. L. Matthews, W.-C. Chang, A. P. Layne, L. A. Miles, C. Krebs, J. M. Bollinger, Nat. Chem. Biol. 2014, 10, 209-215;
M. Kong, K. Wang, R. Dong, H. Gao, Enzyme Microb. Technol. 2015, 73-74, 34-43.
C. Sambiagio, D. Schönbauer, R. Blieck, T. Dao-Huy, G. Pototschnig, P. Schaaf, T. Wiesinger, M. F. Zia, J. Wencel-Delord, T. Besset, B. U. W. Maes, M. Schnürch, Chem. Soc. Rev. 2018, 47, 6603-6743.
S. Rozen, M. Carmeli, J. Am. Chem. Soc. 2003, 125, 8118-8119.
K. R. Reddy, C. U. Maheswari, M. Venkateshwar, M. L. Kantam, Adv. Synth. Catal. 2009, 351, 93-96.
 
G. K. S. Prakash, C. Panja, T. Mathew, V. Surampudi, N. A. Petasis, G. A. Olah, Org. Lett. 2004, 6, 2205-2207;
J. I. Murray, M. V. Silva Elipe, K. D. Baucom, D. B. Brown, K. Quasdorf, S. Caille, J. Org. Chem. 2022, 87, 1977-1985;
A. D. Ainley, F. Challenger, J. Chem. Soc. 1930, 2171-2180.
For selected examples. see:
J. P. Das, P. Sinha, S. Roy, Org. Lett. 2002, 4, 3055-3058;
P. Natarajan, R. Chaudhary, P. Venugopalan, J. Org. Chem. 2015, 80, 10498-10504;
S. Agasti, S. Maiti, S. Maity, M. Anniyappan, M. B. Talawar, D. Maiti, Polyhedron 2019, 172, 120-124;
P. Natarajan, R. Chaudhary, P. Venugopalan, Tetrahedron Lett. 2019, 60, 1720-1723.
 
S. Saito, Y. Koizumi, Tetrahedron Lett. 2005, 46, 4715-4717;
B. P. Fors, S. L. Buchwald, J. Am. Chem. Soc. 2009, 131, 12898-12899;
C. Wu, Q. Bian, T. Ding, M. Tang, W. Zhang, Y. Xu, B. Liu, H. Xu, H.-B. Li, H. Fu, ACS Catal. 2021, 11, 9561-9568.
 
C. L. Perrin, G. A. Skinner, J. Am. Chem. Soc. 1971, 93, 3389-3394;
X.-F. Wu, J. Schranck, H. Neumann, M. Beller, Chem. Commun. 2011, 47, 12462-12463.
For selected examples, see:
B. A. Keay, in Sci. Synth., 1st ed, Georg Thieme Verlag KG, Stuttgart, 2002;
C. Zarate, R. Martin, J. Am. Chem. Soc. 2014, 136, 2236-2239;
R. Sharma, R. Kumar, I. Kumar, B. Singh, U. Sharma, Synthesis 2015, 47, 2347-2366;
C. Cheng, J. F. Hartwig, Chem. Rev. 2015, 115, 8946-8975;
C. Zarate, M. Nakajima, R. Martin, J. Am. Chem. Soc. 2017, 139, 1191-1197;
Y. Minami, T. Hiyama, Chem. Eur. J. 2019, 25, 391-399;
Y. Gu, Y. Shen, C. Zarate, R. Martin, J. Am. Chem. Soc. 2019, 141, 127-132;
S. C. Richter, M. Oestreich, Trends Chem. 2020, 2, 13-27;
A. Tyagi, N. Yadav, J. Khan, S. Singh, C. Kumar Hazra, Asian J. Org. Chem. 2021, 10, 334-354.
 
I. Hajime, S. Hiro-omi, A. Kikuo, M. Katsukiyo, H. Akira, Chem. Lett. 1997, 26, 639-640;
S. E. Denmark, J. Y. Choi, J. Am. Chem. Soc. 1999, 121, 5821-5822;
Y. Nakao, T. Hiyama, Chem. Soc. Rev. 2011, 40, 4893-4901;
T. Komiyama, Y. Minami, T. Hiyama, ACS Catal. 2017, 7, 631-651.
For selected examples, see:
W. E. Brenzovich, Jr, J.-F. Brazeau, F. D. Toste, Org. Lett. 2010, 12, 4728-4731;
A. P. Lothian, C. A. Ramsden, M. M. Shaw, R. G. Smith, Tetrahedron 2011, 67, 2788-2793;
L. T. Ball, G. C. Lloyd-Jones, C. A. Russell, Science 2012, 337, 1644-1648;
L. T. Ball, G. C. Lloyd-Jones, C. A. Russell, J. Am. Chem. Soc. 2014, 136, 254-264;
T. J. A. Corrie, L. T. Ball, C. A. Russell, G. C. Lloyd-Jones, J. Am. Chem. Soc. 2017, 139, 245-254;
C. Kohlmeyer, M. Klüppel, G. Hilt, J. Org. Chem. 2018, 83, 3915-3920.
R. A. Benkeser, P. E. Brumfield, J. Am. Chem. Soc. 1951, 73, 4770-4773.
J. L. Speier, J. Am. Chem. Soc. 1953, 75, 2930-2931.
G. Félix, J. Dunoguès, R. Calas, Angew. Chem. Int. Ed. 1979, 18, 402-404.
J. Schmidt, C. B. W. Stark, J. Org. Chem. 2014, 79, 1920-1928.
 
S. E. Denmark, R. C. Smith, W.-T. T. Chang, J. M. Muhuhi, J. Am. Chem. Soc. 2009, 131, 3104-3118;
S. E. Denmark, A. Ambrosi, Org. Process Res. Dev. 2015, 19, 982-994.
P. Tang, T. Ritter, Tetrahedron 2011, 67, 4449-4454.
 
A. G. M. Barrett, G. G. Graboski, Chem. Rev. 1986, 86, 751-762;
G. K. Windler, P. F. Pagoria, K. P. C. Vollhardt, Synthesis 2014, 46, 2383-2412;
P. D. Morse, T. F. Jamison, Angew. Chem. Int. Ed. 2017, 56, 13999-14002.
Y. Hatanaka, T. Hiyama, J. Org. Chem. 1988, 53, 918-920.
C. Yang, S. P. Nolan, Organometallics 2002, 21, 1020-1022.
W. Verboom, A. Durie, R. J. M. Egberink, Z. Asfari, D. N. Reinhoudt, J. Org. Chem. 1992, 57, 1313-1316.
 
C. Fricke, G. J. Sherborne, I. Funes-Ardoiz, E. Senol, S. Guven, F. Schoenebeck, Angew. Chem. Int. Ed. 2019, 58, 17788-17795;
A. Dahiya, C. Fricke, F. Schoenebeck, J. Am. Chem. Soc. 2020, 142, 7754-7759;
G. J. Sherborne, A. G. Gevondian, I. Funes-Ardoiz, A. Dahiya, C. Fricke, F. Schoenebeck, Angew. Chem. Int. Ed. 2020, 59, 15543-15548;
C. Fricke, K. Deckers, F. Schoenebeck, Angew. Chem. Int. Ed. 2020, 59, 18717-18722;
C. Fricke, F. Schoenebeck, Acc. Chem. Res. 2020, 53, 2715-2725.
 
K. A. Winship, Adverse Drug React. Acute Poisoning Rev. 1988, 7, 19-38;
T. Furuya, A. E. Strom, T. Ritter, J. Am. Chem. Soc. 2009, 131, 1662-1663;
P. Tang, T. Furuya, T. Ritter, J. Am. Chem. Soc. 2010, 132, 12150-12154.
 
G. A. Olah, S. J. Kuhn, S. H. Flood, J. Am. Chem. Soc. 1961, 83, 4571-4580;
J. K. Kochi, Acc. Chem. Res. 1992, 25, 39-47;
B. Galabov, G. Koleva, S. Simova, B. Hadjieva, H. F. Schaefer, P. v. R. Schleyer, Proc. Natl. Acad. Sci. USA 2014, 111, 10067-10072;
M. B. Smith, March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, Wiley, Hoboken, 2020.
C. Hansch, A. Leo, R. W. Taft, Chem. Rev. 1991, 91, 165-195.

Auteurs

Ivan Mosiagin (I)

Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700, Fribourg, Switzerland.

Anthony J Fernandes (AJ)

Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland.

Alena Budinská (A)

Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology ETH Zürich, Vladimir-Prelog-Weg 2, 8093, Zürich, Switzerland.

Liana Hayriyan (L)

Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology ETH Zürich, Vladimir-Prelog-Weg 2, 8093, Zürich, Switzerland.

Kai E O Ylijoki (KEO)

Department of Chemistry, Saint Mary's University, 923 Robie Street, Halifax, NS B3H 3 C3, Canada.

Dmitry Katayev (D)

Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700, Fribourg, Switzerland.
Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland.

Classifications MeSH