Organic Fluorine Compounds and Their Uses as Molecular MR-Based Temperature Sensors.
MRS
NMR spectroscopy
fluorine
molecular sensors
temperature
Journal
Chemphyschem : a European journal of chemical physics and physical chemistry
ISSN: 1439-7641
Titre abrégé: Chemphyschem
Pays: Germany
ID NLM: 100954211
Informations de publication
Date de publication:
16 Nov 2023
16 Nov 2023
Historique:
revised:
25
08
2023
received:
21
07
2023
medline:
27
8
2023
pubmed:
27
8
2023
entrez:
26
8
2023
Statut:
ppublish
Résumé
The interest in fluorinated substances has increased significantly in recent decades due to their diverse properties and possible uses. An important analytical method in this context is NMR spectroscopy, which provides information on the structure as well as on intermolecular interactions or generally on changes in the environment of the nucleus under consideration. A physical quantity that is of great importance in most studies is temperature. However, this is not always easy, e. g. in shielded systems or within an organism. However, the application potential in chemical reactors or in medical diagnosis and therapy is very high and for this reason 13 fluorinated organic compound were chosen for a first
Identifiants
pubmed: 37632422
doi: 10.1002/cphc.202300512
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e202300512Informations de copyright
© 2023 The Authors. ChemPhysChem published by Wiley-VCH GmbH.
Références
Y. Chen, M. Ge, R. Ali, H. Jiang, X. Huang, B. Qiu, Biomed. Eng. OnLine 2018, 17, 39.
H. Odéen, D. L. Parker, Prog. Nucl. Magn. Reson. Spectrosc. 2019, 110, 34-61.
E. Silletta, A. Jerschow, G. Madelin, L. Alon, Commun. Phys. 2019, 2, 152.
R. Larsen, in Anästhesie und Intensivmedizin für die Fachpflege, Springer Berlin Heidelberg, Berlin, Heidelberg, 2016, pp. 994-997.
Y.-M. Seo, S.-A. Im, I. K. Sung, Y. A. Youn, Medicine (Baltimore) 2020, 99, e23176.
B. Denis de Senneville, B. Quesson, C. T. W. Moonen, Int. J. Hyperthermia 2005, 21, 515-531.
M. H. Busch, W. Vollmann, J. Schnorr, D. H. Grönemeyer, Biomed. Eng. OnLine 2005, 4, 25.
Neoptix Elliot Scientific Ltd., “T1 Fiber Optic Temperature Probe”, can be found under https://www.neoptix.com/t1-sensor.asp, 2023 (accessed 18. September 2023).
K. Trainor, J. A. Palumbo, D. W. S. MacKenzie, E. M. Meiering, Protein Sci. 2020, 29, 306-314.
M. Petrén-Mallmin, A. Ericsson, W. Rauschning, A. Hemmingsson, MAGMA Magn. Reson. Mater. Phys. Biol. Med. 1993, 1, 176-184.
E. Ramsay, C. Mougenot, M. Kazem, T. W. Laetsch, R. Chopra, Magn. Reson. Med. 2015, 74, 1095-1102.
G. Vanhoutte, M. Verhoye, A. Van der Linden, Magn. Reson. Med. 2006, 55, 1006-1012.
N. W. Lutz, M. Bernard, iScience 2020, 23, 101561.
D. A. Yablonskiy, J. J. H. Ackerman, M. E. Raichle, Proc. Nat. Acad. Sci. 2000, 97, 7603-7608.
M. Ohnishi, D. W. Urry, Biochem. Biophys. Res. Commun. 1969, 36, 194-202.
K. Kuroda, Y. Suzuki, Y. Ishihara, K. Okamoto, Y. Suzuki, Magn. Reson. Med. 1996, 35, 20-29.
M. Hentschel, M. Findeisen, W. Schmidt, T. Frenzel, W. Wlodarczyk, P. Wust, R. Felix, Magma Magn. Reson. Mater. Phys. Biol. Med. 2000, 10, 52-58.
T. Frenzel, K. Roth, S. Koßler, B. Radüchel, H. Bauer, J. Platzek, H.-J. Weinmann, Magn. Reson. Med. 1996, 35, 364-369.
J. Yuan, C.-S. Mei, L. P. Panych, N. J. McDannold, B. Madore, Quant. Imaging Med. Surg. 2012, 2.
P. Wang, Quant. Imaging Med. Surg. 2017, 7, 259-266.
J. Blackwell, M. J. Kraśny, A. O'Brien, K. Ashkan, J. Galligan, M. Destrade, N. Colgan, J. Magn. Reson. Imaging 2022, 55, 389-403.
E. V. Silletta, A. Jerschow, G. Madelin, L. Alon, Commun. Phys. 2019, 2, 152.
R. A. Newmark, C. H. Sederholm, J. Chem. Phys. 1965, 43, 602-623.
R. A. Newmark, R. E. Graves, J. Phys. Chem. 1968, 72, 4299-4303.
B. A. Berkowitz, J. T. Handa, C. A. Wilson, NMR Biomed. 1992, 5, 65-68.
A. Dimitrov, U. Groß, St. Rüdiger, W. Storek, J. Burdon, J. Fluorine Chem. 1996, 78, 1-5.
S. Langereis, J. Keupp, J. L. J. van Velthoven, I. H. C. de Roos, D. Burdinski, J. A. Pikkemaat, H. Grüll, J. Am. Chem. Soc. 2009, 131, 1380-1381.
L. Ren, S. Chen, W. Jiang, Q. Zeng, X. Zhang, L. Xiao, M. T. McMahon, L. Xin, X. Zhou, Chem. Commun. 2020, 56, 14427-14430.
A. E. Thorarinsdottir, A. I. Gaudette, T. D. Harris, Chem. Sci. 2017, 8, 2448-2456.
C. Prinz, P. R. Delgado, T. W. Eigentler, L. Starke, T. Niendorf, S. Waiczies, Magn. Reson. Mater. Phys. Biol. Med. 2019, 32, 51-61.
A. L. Lee, A. K. Pandey, S. Chiniforoush, M. Mandal, J. Li, C. J. Cramer, C. L. Haynes, W. C. K. Pomerantz, Anal. Chem. 2022, 94, 3782-3790.
F. Mysegaes, P. Spiteller, J. Bernarding, M. Plaumann, ChemPhysChem 2023, e202300057.
F. Mysegaes, P. Voigt, P. Spiteller, I. Prediger, J. Bernarding, M. Plaumann, Chem. Commun. 2023, 10.1039.D3CC02724D.
J. Li, T. F. Mundhenke, T. G. Smith, W. A. Arnold, W. C. K. Pomerantz, Anal. Chem. 2023, 95, 6071-6079.
R. M. Lynden-Bell, Proc. R. Soc. Lond. Ser. Math. Phys. Sci. 1965, 286, 337-351.
D. H. Gultekin, J. C. Gore, J. Magn. Reson. 2005, 172, 133-141.
E. Van Dijk, A. Hoogeveen, S. Abeln, PLoS Comput. Biol. 2015, 11, e1004277.
M. Plaumann, U. Bommerich, T. Trantzschel, D. Lego, S. Dillenberger, G. Sauer, J. Bargon, G. Buntkowsky, J. Bernarding, Chem. Eur. J. 2013, 19, 6334-6339.
J. Bernarding, F. Euchner, C. Bruns, R. Ringleb, D. Müller, T. Trantzschel, J. Bargon, U. Bommerich, M. Plaumann, ChemPhysChem 2018, 19, 2453-2456.
J. Bernarding, C. Bruns, I. Prediger, M. Plaumann, Appl. Magn. Reson. 2022, 53, 1375-1398.