The crucial role of Y109 and R162 as catalytic residues of nanoKAZ: insights from molecular docking, molecular dynamics simulation, and quantum chemical investigations.

Imidazopyridine Oxidation Luciferase MM/PBSA Molecular Dynamics Simulation Quantum Chemistry

Journal

Journal of molecular modeling
ISSN: 0948-5023
Titre abrégé: J Mol Model
Pays: Germany
ID NLM: 9806569

Informations de publication

Date de publication:
26 Aug 2023
Historique:
received: 20 05 2023
accepted: 21 08 2023
medline: 27 8 2023
pubmed: 27 8 2023
entrez: 26 8 2023
Statut: epublish

Résumé

nanoKAZ is a compact luciferase that exhibits intense blue light emission when it catalyzes the substrate Furimazine (FMZ) as a luciferin, making it an excellent candidate as a reporter protein. However, the specific catalytic residues and mechanism of nanoKAZ have not been revealed. Recently, the structure of nanoKAZ was determined, and it was observed that the luminescent properties changed when FMZ analogs with naphthalene replacing benzene were used. It is speculated that the substituted naphthalene may influence the interaction between the catalytic residues and luciferins, thereby affecting the energy of the emitted light signal. Therefore, the primary objective of this study is to analyze and compare the molecular recognition between nanoKAZ and FMZ along with its four activity-altered naphthalene analogs, with aiming to identify the catalytic residues. Molecular docking was employed to construct all nanoKAZ-luciferin models, followed by a 500 ns molecular dynamics simulation. The simulation trajectory was subjected to MM/PBSA analysis to identify crucial residues that contribute significantly to luciferin binding. In the result, two polar residues Y109, and R162 were identified as active residues as their notable contributions to the binding energy. Subsequently, an oxygen molecule was introduced into the local region of the nanoKAZ-FMZ complex and followed with quantum chemical calculations (semiempirical and DFT methods were used) to investigate the catalysis details. The results illustrated the involvement of Y109 and R162 in the oxygenation of FMZ, leading to the formation of dioxetanone, which has been suggested as an important intermediate in the oxidation process among various luciferins sharing the same functional group as FMZ.

Identifiants

pubmed: 37632522
doi: 10.1007/s00894-023-05703-4
pii: 10.1007/s00894-023-05703-4
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

295

Subventions

Organisme : Henan Provincial Key Scientific Research Project Plan for Colleges and Universities
ID : 23A180002
Organisme : International Science and Technology Cooperation Project in Henan Province
ID : 232102520008

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Liu S, Su Y, Lin MZ et al (2021) Brightening up Biology: Advances in Luciferase Systems for in Vivo Imaging. ACS Chem Biol 16:2707–2718
doi: 10.1021/acschembio.1c00549 pubmed: 34780699 pmcid: 8689642
Conti E, Franks NP, Brick P (1996) Crystal structure of firefly luciferase throws light on a superfamily of adenylate-forming enzymes. Structure 4:287–298
doi: 10.1016/S0969-2126(96)00033-0 pubmed: 8805533
Loening AM, Fenn TD, Gambhir SS (2007) Crystal structures of the luciferase and green fluorescent protein from Renilla reniformis. J Mol Biol 374:1017–1028
doi: 10.1016/j.jmb.2007.09.078 pubmed: 17980388 pmcid: 2700051
Wu N, Kobayashi N, Tsuda K, Unzai S et al (2020) Solution structure of Gaussia Luciferase with five disulfide bonds and identification of a putative coelenterazine binding cavity by heteronuclear NMR. Sci Rep 10:20069
doi: 10.1038/s41598-020-76486-4 pubmed: 33208800 pmcid: 7674443
Inouye S, Sato JI, Sahara-Miura Y et al (2014) Luminescence enhancement of the catalytic 19kDa protein (KAZ) of Oplophorus luciferase by three amino acid substitutions. Biochem Biophys Res Commun 445:157–162
doi: 10.1016/j.bbrc.2014.01.133 pubmed: 24491536
Koo JY, Schuster GB (1977) Chemically initiated electron exchange luminescence. A new chemiluminescent reaction path for organic peroxides. J Am Chem Soc 99:6107–6109
doi: 10.1021/ja00460a050
Koo JY, Schuster GB (1978) Chemiluminescence of diphenoyl peroxide. Chemically initiated electron exchange luminescence. A new general mechanism for chemical production of electronically excited states. J Am Chem Soc 100:4496–4503
doi: 10.1021/ja00482a030
Shimomura O (2006) Bioluminescence: chemical principles and methods. World Scientific, Singapore
doi: 10.1142/6102
Ding BW, Liu YJ (2017) Bioluminescence of Firefly Squid via Mechanism of Single Electron-Transfer Oxygenation and Charge-Transfer-Induced Luminescence. J Am Chem Soc 139:1106–1119
doi: 10.1021/jacs.6b09119 pubmed: 28032762
Yeh AH, Norn C, Kipnis Y et al (2023) De novo design of luciferases using deep learning. Nature 614:774–780
doi: 10.1038/s41586-023-05696-3 pubmed: 36813896 pmcid: 9946828
Hall MP, Unch J, Binkowski BF et al (2012) Engineered luciferase reporter from a deep sea shrimp utilizing a novel imidazopyrazinone substrate. ACS Chem Biol 7:1848–1857
doi: 10.1021/cb3002478 pubmed: 22894855 pmcid: 3501149
Tomabechi Y, Hosoya T, Ehara H et al (2016) Crystal structure of nanoKAZ: The mutated 19 kDa component of Oplophorus luciferase catalyzing the bioluminescent reaction with coelenterazine. Biochem Biophys Res Commun 470:88–93
doi: 10.1016/j.bbrc.2015.12.123 pubmed: 26746005
Inouye S, Sato JI, Sahara-Miura Y et al (2022) Reverse mutants of the catalytic 19 kDa mutant protein (nanoKAZ/nanoLuc) from Oplophorus luciferase with coelenterazine as preferred substrate. PLoS ONE 17:e0272992
doi: 10.1371/journal.pone.0272992 pubmed: 36129943 pmcid: 9491549
Shakhmin A, Hall MP, Machleidt T et al (2017) Coelenterazine analogues emit red-shifted bioluminescence with NanoLuc. Org Biomol Chem 15:8559–8567
doi: 10.1039/C7OB01985H pubmed: 28972606
Van Der Spoel D, Lindahl E, Hess B et al (2005) GROMACS: fast, flexible, and free. J Comput Chem 26:1701–1718
doi: 10.1002/jcc.20291 pubmed: 16211538
Roy D, Todd AK, John MM (2016) GaussView, Version 6.1, Semichem Inc., Shawnee Mission, KS
Lu T (2023) Sobtop, Version [3.1]. http://sobereva.com/soft/Sobtop . Accessed on 2023.1.1
Kumari R, Kumar R, Lynn A (2014) g_mmpbsa—A GROMACS Tool for High-Throughput MM-PBSA Calculations. J Chem Inf Model 54:1951–1962
doi: 10.1021/ci500020m pubmed: 24850022
Bannwarth C, Caldeweyher E, Ehlert S et al (2021) Extended tight-binding quantum chemistry methods. WIREs Comput Mol Sci 11:e1493
doi: 10.1002/wcms.1493
Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA Jr., Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian Inc., Wallingford CT
Lu T, Chen FW (2012) Multiwfn: A multifunctional wavefunction analyzer. J Comput Chem 33:580–592
doi: 10.1002/jcc.22885 pubmed: 22162017
Zhang J, Lu T (2021) Efficient evaluation of electrostatic potential with computerized optimized code. Phys Chem Chem Phys 23:20323–20328
doi: 10.1039/D1CP02805G pubmed: 34486612
Jurrus E, Engel D, Star K et al (2018) Improvements to the APBS biomolecular solvation software suite. Protein Sci 27:112–128
doi: 10.1002/pro.3280 pubmed: 28836357
Trott O, Olson A (2010) Software News and Update AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461
pubmed: 19499576 pmcid: 3041641
Schrödinger L, DeLano W (2020) PyMOL. http://www.pymol.org/pymol . Accessed on 2021.1.1
Humphrey W, Dalke A, Schulten K (1996) VMD: Visual molecular dynamics. J Mol Graph 14:33–38
doi: 10.1016/0263-7855(96)00018-5 pubmed: 8744570
Maier JA, Martinez C, Kasavajhala K et al (2015) ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. J Chem Theory Comput 11:3696–3713
doi: 10.1021/acs.jctc.5b00255 pubmed: 26574453 pmcid: 4821407
Chai JD, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys Chem Chem Phys 10:6615–6620
doi: 10.1039/b810189b pubmed: 18989472
Bayly CI, Cieplak P, Cornell W et al (1993) A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J Phys Chem 97:10269–10280
doi: 10.1021/j100142a004
Eggimann BL, Sunnarborg AJ, Stern HD et al (2014) An online parameter and property database for the TraPPE force field. Mol Simulat 40:101–105
doi: 10.1080/08927022.2013.842994
Bannwarth C, Ehlert S, Grimme S (2019) GFN2-xTB—An Accurate and Broadly Parametrized Self-Consistent Tight-Binding Quantum Chemical Method with Multipole Electrostatics and Density-Dependent Dispersion Contributions. J Chem Theory Comput 15:1652–1671
doi: 10.1021/acs.jctc.8b01176 pubmed: 30741547
Stewart JJ (2013) Optimization of parameters for semiempirical methods VI: more modifications to the NDDO approximations and re-optimization of parameters. J Mol Model 19:1–32
doi: 10.1007/s00894-012-1667-x pubmed: 23187683
Svensson M, Humbel S, Froese RDJ et al (1996) ONIOM: A Multilayered Integrated MO + MM Method for Geometry Optimizations and Single Point Energy Predictions. A Test for Diels−Alder Reactions and Pt(P(t-Bu)3)2 + H2 Oxidative Addition. J Phys Chem 100:19357–19363
doi: 10.1021/jp962071j
Pinto da Silva L, Esteves da Silva JCG (2014) Quantum/molecular mechanics study of firefly bioluminescence on luciferase oxidative conformation. Chem Phys Lett 608:45–49
doi: 10.1016/j.cplett.2014.05.061
Min CG, Ferreira PJO, Pinto da Silva L (2017) Theoretically obtained insight into the mechanism and dioxetanone species responsible for the singlet chemiexcitation of Coelenterazine. J Photochem Photobiol B 174:18–26
doi: 10.1016/j.jphotobiol.2017.07.012 pubmed: 28750319
Magalhaes CM, Esteves da Silva JCG, Pinto da Silva L (2022) Theoretical Study of the Thermolysis Reaction and Chemiexcitation of Coelenterazine Dioxetanes. J Phys Chem A 126:3486–3494
doi: 10.1021/acs.jpca.2c01835 pubmed: 35612291 pmcid: 9776548
Fanaei-Kahrani Z, Ganjalikhany Mohamad R, Mohammad RS et al (2017) New insights into the molecular characteristics behind the function of Renilla luciferase. J Cell Biochem 119:1780–1790
doi: 10.1002/jcb.26339 pubmed: 28796298
Yue L (2018) QM/MM Investigations on the Bioluminescent Decomposition of Coelenterazine Dioxetanone in Obelin. Chem Res Chin Univ 34:758–766
doi: 10.1007/s40242-018-8237-4
Schenkmayerova A, Toul M, Pluskal D et al (2023) Catalytic mechanism for Renilla-type luciferases. Nat Catal 6:23–38
doi: 10.1038/s41929-022-00895-z

Auteurs

Nan Wu (N)

College of Food and Bioengineering, Zhengzhou University of Light Industry, 136 Kexue Road, Zhengzhou, 450001, People's Republic of China.

Zi-Qiang Duan (ZQ)

College of Food and Bioengineering, Zhengzhou University of Light Industry, 136 Kexue Road, Zhengzhou, 450001, People's Republic of China.

Bao-Cheng Ji (BC)

College of Food and Bioengineering, Zhengzhou University of Light Industry, 136 Kexue Road, Zhengzhou, 450001, People's Republic of China.

Yan-Hong Bai (YH)

College of Food and Bioengineering, Zhengzhou University of Light Industry, 136 Kexue Road, Zhengzhou, 450001, People's Republic of China. baiyanhong212@163.com.

Classifications MeSH