Role of plectin and its interacting molecules in cancer.
Cancer
Expression
Function
Interaction molecules
Plectin
Structure
Journal
Medical oncology (Northwood, London, England)
ISSN: 1559-131X
Titre abrégé: Med Oncol
Pays: United States
ID NLM: 9435512
Informations de publication
Date de publication:
26 Aug 2023
26 Aug 2023
Historique:
received:
24
04
2023
accepted:
20
07
2023
medline:
28
8
2023
pubmed:
27
8
2023
entrez:
26
8
2023
Statut:
epublish
Résumé
Plectin, as the cytolinker and scaffolding protein, are widely expressed and abundant in many tissues, and has involved in various cellular activities contributing to tumorigenesis, such as cell adhesion, migration, and signal transduction. Due to the specific expression and differential localization of plectin in cancer, most researchers focus on the role of plectin in cancer, and it has emerged as a potent driver of malignant hallmarks in many human cancers, which provides the possibility for plectin to be widely used as a biomarker and therapeutic target in the early diagnosis and targeted drug delivery of the disease. However, there is still a lack of systematic review on the interaction molecules and mechanism of plectin. Herein, we summarized the structure, expression and function of plectin, and mainly focused on recent studies on the functional and physical interactions between plectin and its interacting molecules, shedding light on the potential of targeting plectin for cancer therapy.
Identifiants
pubmed: 37632650
doi: 10.1007/s12032-023-02132-4
pii: 10.1007/s12032-023-02132-4
doi:
Substances chimiques
Plectin
0
PLEC protein, human
0
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
280Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Wiche G. Role of plectin in cytoskeleton organization and dynamics. J Cell Sci. 1998;11:2477–86.
Wiche G, Winter L. Plectin isoforms as organizers of intermediate filament cytoarchitecture. BioArchitecture. 2011;1:14–20.
pubmed: 21866256
pmcid: 3158638
Svitkina T, Verkhovsky A, Borisy G. Plectin sidearms mediate interaction of intermediate filaments with microtubules and other components of the cytoskeleton. J Cell Biol. 1996;135:991–1007.
pubmed: 8922382
Foisner R, Bohn W, Mannweiler K, Wiche G. Distribution and ultrastructure of plectin arrays in subclones of rat glioma C6 cells differing in intermediate filament protein (vimentin) expression. J Struct Biol. 1995;115:304–17.
pubmed: 8573472
Jeon J, Suh H, Kim M, Han H. Glucosamine-induced reduction of integrin β4 and plectin complex stimulates migration and proliferation in mouse embryonic stem cells. Stem Cells Dev. 2013;22:2975–89.
pubmed: 23815613
Osmanagic-Myers S, Gregor M, Walko G, Burgstaller G, Reipert S, Wiche G. Plectin-controlled keratin cytoarchitecture affects MAP kinases involved in cellular stress response and migration. J Cell Biol. 2006;174:557–68.
pubmed: 16908671
pmcid: 2064261
Takawira D, Budinger G, Hopkinson S, Jones J. A dystroglycan/plectin scaffold mediates mechanical pathway bifurcation in lung epithelial cells. J Biol Chem. 2011;286:6301–10.
pubmed: 21149456
Osmanagic-Myers S, Wiche G. Plectin-RACK1 (receptor for activated C kinase 1) scaffolding: a novel mechanism to regulate protein kinase C activity. J Biol Chem. 2004;279:18701–10.
pubmed: 14966116
Andrä K, Nikolic B, Stöcher M, Drenckhahn D, Wiche G. Not just scaffolding: plectin regulates actin dynamics in cultured cells. Gene Dev. 1998;12:3442–51.
pubmed: 9808630
pmcid: 317224
Rezniczek G, de Pereda J, Reipert S, Wiche G. Linking integrin alpha6beta4-based cell adhesion to the intermediate filament cytoskeleton: direct interaction between the beta4 subunit and plectin at multiple molecular sites. J Cell Biol. 1998;141:209–25.
pubmed: 9531560
pmcid: 2132717
Kostan J, Gregor M, Walko G, Wiche G. Plectin isoform-dependent regulation of keratin-integrin alpha6beta4 anchorage via Ca
pubmed: 19419971
pmcid: 2709376
Niwa T, Saito H, Imajoh-ohmi S, Kaminishi M, Seto Y, Miki Y, et al. BRCA2 interacts with the cytoskeletal linker protein plectin to form a complex controlling centrosome localization. Cancer Sci. 2009;100:2115–25.
pubmed: 19709076
Fish L, Khoroshkin M, Navickas A, Garcia K, Culbertson B, Hänisch B, et al. A prometastatic splicing program regulated by SNRPA1 interactions with structured RNA elements. Science. 2021. https://doi.org/10.1126/science.abc7531 .
doi: 10.1126/science.abc7531
pubmed: 33986153
pmcid: 8238114
Yu P, Babicky M, Jaquish D, French R, Marayuma K, Mose E, et al. The RON-receptor regulates pancreatic cancer cell migration through phosphorylation-dependent breakdown of the hemidesmosome. Int J Cancer. 2012;131:1744–54.
pubmed: 22275185
pmcid: 3424378
Sabbir M, Dillon R, Mowat M. Dlc1 interaction with non-muscle myosin heavy chain II-A (Myh9) and Rac1 activation. Biol Open. 2016;5:452–60.
pubmed: 26977077
pmcid: 4890663
Katada K, Tomonaga T, Satoh M, Matsushita K, Tonoike Y, Kodera Y, et al. Plectin promotes migration and invasion of cancer cells and is a novel prognostic marker for head and neck squamous cell carcinoma. J Proteomics. 2012;75:1803–15.
pubmed: 22245045
Buckup M, Rice M, Hsu E, Garcia-Marques F, Liu S, Aslan M, et al. Plectin is a regulator of prostate cancer growth and metastasis. Oncogene. 2021;40:663–76.
pubmed: 33219316
Shin S, Smith J, Rezniczek G, Pan S, Chen R, Brentnall T, et al. Unexpected gain of function for the scaffolding protein plectin due to mislocalization in pancreatic cancer. Proc Natl Acad Sci USA. 2013;110:19414–9.
pubmed: 24218614
pmcid: 3845200
Raymond A, Gao B, Girard L, Minna J, Gomika UD. Unbiased peptoid combinatorial cell screen identifies plectin protein as a potential biomarker for lung cancer stem cells. Sci Rep. 2019;9:14954.
pubmed: 31628412
pmcid: 6802198
Li Y, Zhao Z, Liu H, Fetse J, Jain A, Lin C, et al. Development of a tumor-responsive nanopolyplex targeting pancreatic cancer cells and stroma. ACS Appl Mater Interfaces. 2019;11:45390–403.
pubmed: 31769963
pmcid: 7372733
Dasa S, Diakova G, Suzuki R, Mills A, Gutknecht M, Klibanov A, et al. Plectin-targeted liposomes enhance the therapeutic efficacy of a PARP inhibitor in the treatment of ovarian cancer. Theranostics. 2018;8:2782–98.
pubmed: 29774075
pmcid: 5957009
Bausch D, Mino-Kenudson M, Fernández-Del Castillo C, Warshaw A, Kelly K, Thayer S. Plectin-1 is a biomarker of malignant pancreatic intraductal papillary mucinous neoplasms. J Gastrointest Surg. 2009;13:1948–54 (discussion 54).
pubmed: 19760374
pmcid: 3806105
Pytela R, Wiche G. High molecular weight polypeptides (270,000–340,000) from cultured cells are related to hog brain microtubule-associated proteins but copurify with intermediate filaments. Proc Natl Acad Sci USA. 1980;77:4808–12.
pubmed: 6933530
pmcid: 349936
Castañón M, Walko G, Winter L, Wiche G. Plectin-intermediate filament partnership in skin, skeletal muscle, and peripheral nerve. Histochem Cell Biol. 2013;140:33–53.
pubmed: 23748243
pmcid: 3695321
Foisner R, Wiche G. Structure and hydrodynamic properties of plectin molecules. J Mol Biol. 1987;198:515–31.
pubmed: 3430617
Wiche G, Becker B, Luber K, Weitzer G, Castañon M, Hauptmann R, et al. Cloning and sequencing of rat plectin indicates a 466-kD polypeptide chain with a three-domain structure based on a central alpha-helical coiled coil. J Cell Biol. 1991;114:83–99.
pubmed: 2050743
Ortega E, Buey R, Sonnenberg A, de Pereda J. The structure of the plakin domain of plectin reveals a non-canonical SH3 domain interacting with its fourth spectrin repeat. J Biol Chem. 2011;286:12429–38.
pubmed: 21288893
pmcid: 3069446
Fuchs P, Zörer M, Rezniczek G, Spazierer D, Oehler S, Castañón M, et al. Unusual 5’ transcript complexity of plectin isoforms: novel tissue-specific exons modulate actin binding activity. Hum Mol Genet. 1999;8:2461–72.
pubmed: 10556294
Walko G, Vukasinovic N, Gross K, Fischer I, Sibitz S, Fuchs P, et al. Targeted proteolysis of plectin isoform 1a accounts for hemidesmosome dysfunction in mice mimicking the dominant skin blistering disease EBS-Ogna. Plos Genet. 2011;7:e1002396.
pubmed: 22144912
pmcid: 3228830
Janda L, Damborský J, Rezniczek G, Wiche G. Plectin repeats and modules: strategic cysteines and their presumed impact on cytolinker functions. BioEssays. 2001;23:1064–9.
pubmed: 11746222
Nikolic B, Mac Nulty E, Mir B, Wiche G. Basic amino acid residue cluster within nuclear targeting sequence motif is essential for cytoplasmic plectin-vimentin network junctions. J Cell Biol. 1996;134:1455–67.
pubmed: 8830774
Kelly K, Bardeesy N, Anbazhagan R, Gurumurthy S, Berger J, Alencar H, et al. Targeted nanoparticles for imaging incipient pancreatic ductal adenocarcinoma. PLoS Med. 2008;5:e85.
pubmed: 18416599
pmcid: 2292750
Wu Y, Tang Y, Xie S, Zheng X, Zhang S, Mao J, et al. Chimeric peptide supramolecular nanoparticles for plectin-1 targeted miRNA-9 delivery in pancreatic cancer. Theranostics. 2020;10:1151–65.
pubmed: 31938057
pmcid: 6956805
Chen X, Zhou H, Li X, Duan N, Hu S, Liu Y, et al. Plectin-1 targeted Dual-modality nanoparticles for pancreatic cancer imaging. EBioMedicine. 2018;30:129–37.
pubmed: 29574092
pmcid: 5952251
Konkalmatt P, Deng D, Thomas S, Wu M, Logsdon C, French B, et al. Plectin-1 targeted AAV vector for the molecular imaging of pancreatic cancer. Front Oncol. 2013;3:84.
pubmed: 23616947
pmcid: 3629297
Bausch D, Thomas S, Mino-Kenudson M, Fernández-del C, Bauer T, Williams M, et al. Plectin-1 as a novel biomarker for pancreatic cancer. Clinical Cancer Res. 2011;17:302–9.
Oto A, Eltorky M, Dave A, Ernst R, Chen K, Rampy B, et al. Mimicks of pancreatic malignancy in patients with chronic pancreatitis: correlation of computed tomography imaging features with histopathologic findings. Curr Probl Diagn Radiol. 2006;35:199–205.
pubmed: 16949476
Liu Y, Ho C, Cheng C, Pei R, Hsu Y, Yeh K, et al. Pleomorphism of cancer cells with the expression of plectin and concept of filament bundles in human hepatocellular carcinoma. Res Commun Mol Pathol Pharmacol. 2007;120:43–54.
pubmed: 21469503
Cheng C, Lai Y, Lai Y, Hsu Y, Chao W, Sia K, et al. Transient knockdown-mediated deficiency in plectin alters hepatocellular motility in association with activated FAK and Rac1-GTPase. Cancer Cell Int. 2015;15:29.
pubmed: 25774093
pmcid: 4358909
Dumas V, Kanitakis J, Charvat S, Euvrard S, Faure M, Claudy A. Expression of basement membrane antigens and matrix metalloproteinases 2 and 9 in cutaneous basal and squamous cell carcinomas. Anticancer Res. 1999;19:2929–38.
pubmed: 10652575
Kadeer A, Maruyama T, Kajita M, Morita T, Sasaki A, Ohoka A, et al. Plectin is a novel regulator for apical extrusion of RasV12-transformed cells. Sci Rep. 2017;7:44328.
pubmed: 28281696
pmcid: 5345014
McInroy L, Määttä A. Plectin regulates invasiveness of SW480 colon carcinoma cells and is targeted to podosome-like adhesions in an isoform-specific manner. Exp Cell Res. 2011;317:2468–78.
pubmed: 21821021
Stegh A, Herrmann H, Lampel S, Weisenberger D, Andrä K, Seper M, et al. Identification of the cytolinker plectin as a major early in vivo substrate for caspase 8 during CD95- and tumor necrosis factor receptor-mediated apoptosis. Mol Cell Biol. 2000;20:5665–79.
pubmed: 10891503
pmcid: 86037
Burgstaller G, Gregor M, Winter L, Wiche G. Keeping the vimentin network under control: cell-matrix adhesion-associated plectin 1f affects cell shape and polarity of fibroblasts. Mol Biol Cell. 2010;21:3362–75.
pubmed: 20702585
pmcid: 2947472
Jiu Y, Lehtimäki J, Tojkander S, Cheng F, Jäälinoja H, Liu X, et al. Bidirectional interplay between vimentin intermediate filaments and contractile actin stress fibers. Cell Rep. 2015;11:1511–8.
pubmed: 26027931
Kidd M, Shumaker D, Ridge K. The role of vimentin intermediate filaments in the progression of lung cancer. Am J Respir Cell Mol Biol. 2014;50:1–6.
pubmed: 23980547
pmcid: 3930939
Sutoh Yoneyama M, Hatakeyama S, Habuchi T, Inoue T, Nakamura T, Funyu T, et al. Vimentin intermediate filament and plectin provide a scaffold for invadopodia, facilitating cancer cell invasion and extravasation for metastasis. Eur J Cell Biol. 2014;93:157–69.
pubmed: 24810881
Wang C, Wang C, Wu Y, Feng H, Liu P, Chang Y, et al. Quantitative proteomics reveals a novel role of karyopherin alpha 2 in cell migration through the regulation of vimentin-pErk protein complex levels in lung cancer. J Proteome Res. 2015;14:1739–51.
pubmed: 25728791
Chaudhari P, Charles S, D’Souza Z, Vaidya M. Hemidesmosomal linker proteins regulate cell motility, invasion and tumorigenicity in oral squamous cell carcinoma derived cells. Exp Cell Res. 2017;360:125–37.
pubmed: 28867478
Cheng C, Chao W, Liao C, Tseng Y, Lai Y, Lai Y, et al. Plectin deficiency in liver cancer cells promotes cell migration and sensitivity to sorafenib treatment. Cell Adhes Migr. 2018;12:19–27.
Andrä K, Lassmann H, Bittner R, Shorny S, Fässler R, Propst F, et al. Targeted inactivation of plectin reveals essential function in maintaining the integrity of skin, muscle, and heart cytoarchitecture. Gene Dev. 1997;11:3143–56.
pubmed: 9389647
pmcid: 316746
Bershadsky A, Chausovsky A, Becker E, Lyubimova A, Geiger B. Involvement of microtubules in the control of adhesion-dependent signal transduction. Curr Biol. 1996;6:1279–89.
pubmed: 8939572
Andra K, Nikolic B, Stocher M, Drenckhahn D, Wiche G. Not just scaffolding: plectin regulates actin dynamics in cultured cells. Genes Dev. 1998;12:3442–51.
pubmed: 9808630
pmcid: 317224
Sweeney HL, Holzbaur ELF. Motor proteins. Cold Spring Harb Perspect Biol. 2018. https://doi.org/10.1101/cshperspect.a021931 .
doi: 10.1101/cshperspect.a021931
pubmed: 29716949
pmcid: 5932582
Huxley A. Muscle structure and theories of contraction. Prog Biophys Biophys Chem. 1957;7:255–318.
pubmed: 13485191
Hug C, Jay PY, Reddy I, McNally JG, Bridgman PC, Elson EL, et al. Capping protein levels influence actin assembly and cell motility in dictyostelium. Cell. 1995;81:591–600.
pubmed: 7758113
Hemler M. VLA proteins in the integrin family: structures, functions, and their role on leukocytes. Annu Rev Immunol. 1990;8:365–400.
pubmed: 2188667
Buck C, Horwitz A. Cell surface receptors for extracellular matrix molecules. Annu Rev Cell Biol. 1987;3:179–205.
pubmed: 2825736
Hynes R. Integrins: versatility, modulation, and signaling in cell adhesion. Cell. 1992;69:11–25.
pubmed: 1555235
Juliano R, Haskill S. Signal transduction from the extracellular matrix. J Cell Biol. 1993;120:577–85.
pubmed: 8381117
Dowling J, Yu Q, Fuchs E. Beta4 integrin is required for hemidesmosome formation, cell adhesion and cell survival. J Cell Biol. 1996;134:559–72.
pubmed: 8707838
van der Neut R, Krimpenfort P, Calafat J, Niessen CM, Sonnenberg A. Epithelial detachment due to absence of hemidesmosomes in integrin beta 4 null mice. Nat Genet. 1996;13:366–9.
pubmed: 8673140
Duronio R, Gordon J, Boguski M. Comparative analysis of the beta transducin family with identification of several new members including PWP1, a nonessential gene of Saccharomyces cerevisiae that is divergently transcribed from NMT1. Proteins. 1992;13:41–56.
pubmed: 1594577
Ron D, Chen CH, Caldwell J, Jamieson L, Orr E, Mochly-Rosen D. Cloning of an intracellular receptor for protein kinase C: a homolog of the beta subunit of G proteins. Proc Natl Acad Sci U S A. 1994;91:839–43.
pubmed: 8302854
pmcid: 521407
Guillemot F, Billault A, Auffray C. Physical linkage of a guanine nucleotide-binding protein-related gene to the chicken major histocompatibility complex. P Natl Acad Sci USA. 1989;86:4594–8.
Chou Y, Chou C, Chen Y, Tsai S, Hsieh F, Liu H, et al. Structure and genomic organization of porcine RACK1 gene. Biochem Biophys Acta. 1999;1489:315–22.
pubmed: 10673032
Zhang Q, Ragnauth C, Greener M, Shanahan C, Roberts R. The nesprins are giant actin-binding proteins, orthologous to Drosophila melanogaster muscle protein MSP-300. Genomics. 2002;80:473–81.
pubmed: 12408964
Simpson JG, Roberts RG. Patterns of evolutionary conservation in the nesprin genes highlight probable functionally important protein domains and isoforms. Biochem Soc Trans. 2008;36:1359–67.
pubmed: 19021556
Wilhelmsen K, Litjens SHM, Kuikman I, Tshimbalanga N, Janssen H, van den Bout I, et al. Nesprin-3, a novel outer nuclear membrane protein, associates with the cytoskeletal linker protein plectin. J Cell Biol. 2005;171:799–810.
pubmed: 16330710
pmcid: 2171291
Postel R, Ketema M, Kuikman I, de Pereda JM, Sonnenberg A. Nesprin-3 augments peripheral nuclear localization of intermediate filaments in zebrafish. J Cell Sci. 2011;124:755–64.
pubmed: 21303928
Ketema M, Wilhelmsen K, Kuikman I, Janssen H, Hodzic D, Sonnenberg A. Requirements for the localization of nesprin-3 at the nuclear envelope and its interaction with plectin. J Cell Sci. 2007;120:3384–94.
pubmed: 17881500
Lombardi M, Jaalouk D, Shanahan C, Burke B, Roux K, Lammerding J. The interaction between nesprins and sun proteins at the nuclear envelope is critical for force transmission between the nucleus and cytoskeleton. J Biol Chem. 2011;286:26743–53.
pubmed: 21652697
pmcid: 3143636
Geerts D, Fontao L, Nievers MG, Schaapveld RQ, Purkis PE, Wheeler GN, et al. Binding of integrin alpha6beta4 to plectin prevents plectin association with F-actin but does not interfere with intermediate filament binding. J Cell Biol. 1999;147:417–34.
pubmed: 10525545
pmcid: 2174221
Koster J, Geerts D, Favre B, Borradori L, Sonnenberg A. Analysis of the interactions between BP180, BP230, plectin and the integrin alpha6beta4 important for hemidesmosome assembly. J Cell Sci. 2003;116:387–99.
pubmed: 12482924
Pellegrini L, Venkitaraman A. Emerging functions of BRCA2 in DNA recombination. Trends Biochem Sci. 2004;29:310–6.
pubmed: 15276185
Esashi F, Christ N, Gannon J, Liu Y, Hunt T, Jasin M, et al. CDK-dependent phosphorylation of BRCA2 as a regulatory mechanism for recombinational repair. Nature. 2005;434:598–604.
pubmed: 15800615
Gonczy P. Centrosomes: hooked on the nucleus. Curr Biol. 2004;14:R268-70.
pubmed: 15062118
Kim Y, Lee J, Kim H, Lee M, Son M, Yoo C, et al. The unique spliceosome signature of human pluripotent stem cells is mediated by SNRPA1, SNRPD1, and PNN. Stem Cell Res. 2017;22:43–53.
pubmed: 28595116
Angeloni D, Danilkovitch-Miagkova A, Ivanov S, Breathnach R, Johnson B, Leonard E, et al. Gene structure of the human receptor tyrosine kinase RON and mutation analysis in lung cancer samples. Genes Chromosom Cancer. 2000;29:147–56.
pubmed: 10959094
Yao H, Zhou Y, Zhang R, Wang M. MSP-RON signalling in cancer: pathogenesis and therapeutic potential. Nat Rev Cancer. 2013;13:466–81.
pubmed: 23792360
Boczonadi V, Määttä A. Annexin A9 is a periplakin interacting partner in membrane-targeted cytoskeletal linker protein complexes. FEBS Lett. 2012;586:3090–6.
pubmed: 22841549
Boczonadi V, McInroy L, Määttä A. Cytolinker cross-talk: periplakin N-terminus interacts with plectin to regulate keratin organisation and epithelial migration. Exp Cell Res. 2007;313:3579–91.
pubmed: 17662978
Long H, Boczonadi V, McInroy L, Goldberg M, Määttä A. Periplakin-dependent re-organisation of keratin cytoskeleton and loss of collective migration in keratin-8-downregulated epithelial sheets. J Cell Sci. 2006;119:5147–59.
pubmed: 17158917
Braun A, Olayioye M. Rho regulation: DLC proteins in space and time. Cell Signal. 2015;27:1643–51.
pubmed: 25889896
Gregor M, Osmanagic-Myers S, Burgstaller G, Wolfram M, Fischer I, Walko G, et al. Mechanosensing through focal adhesion-anchored intermediate filaments. FASEB J. 2014;28:715–29.
pubmed: 24347609
Holeiter G, Heering J, Erlmann P, Schmid S, Jähne R, Olayioye M. Deleted in liver cancer 1 controls cell migration through a Dia1-dependent signaling pathway. Cancer Res. 2008;68:8743–51.
pubmed: 18974116
Sabbir M, Wigle N, Loewen S, Gu Y, Buse C, Hicks G, et al. Identification and characterization of Dlc1 isoforms in the mouse and study of the biological function of a single gene trapped isoform. BMC Biol. 2010;8:17.
pubmed: 20199662
pmcid: 2839985
Goldfarb D, Corbett A, Mason D, Harreman M, Adam S. Importin alpha: a multipurpose nuclear-transport receptor. Trends Cell Biol. 2004;14:505–4.
pubmed: 15350979
Christiansen A, Dyrskjøt L. The functional role of the novel biomarker karyopherin α 2 (KPNA2) in cancer. Cancer Lett. 2013;331:18–23.
pubmed: 23268335
Gousias K, Becker A, Simon M, Niehusmann P. Nuclear karyopherin a2: a novel biomarker for infiltrative astrocytomas. J Neurooncol. 2012;109:545–53.
pubmed: 22772608
Craig A, Zirngibl R, Greer P. Disruption of coiled-coil domains in Fer protein-tyrosine kinase abolishes trimerization but not kinase activation. J Biol Chem. 1999;274:19934–42.
pubmed: 10391941
Orlovsky K, Ben-Dor I, Priel-Halachmi S, Malovany H, Nir U. N-terminal sequences direct the autophosphorylation states of the FER tyrosine kinases in vivo. Biochemistry. 2000;39:11084–91.
pubmed: 10998246
Lunter PC, Wiche G. Direct binding of plectin to Fer kinase and negative regulation of its catalytic activity. Biochem Bioph Res Co. 2002;296:904–10.
Rezniczek G, Konieczny P, Nikolic B, Reipert S, Schneller D, Abrahamsberg C, et al. Plectin 1f scaffolding at the sarcolemma of dystrophic (mdx) muscle fibers through multiple interactions with beta-dystroglycan. J Cell Biol. 2007;176:965–77.
pubmed: 17389230
pmcid: 2064082
Capetanaki Y. Desmin cytoskeleton: a potential regulator of muscle mitochondrial behavior and function. Trends Cardiovasc Med. 2002;12:339–48.
pubmed: 12536120
Paulin D, Li Z. Desmin: a major intermediate filament protein essential for the structural integrity and function of muscle. Exp Cell Res. 2004;301:1–7.
pubmed: 15501438