Universal patterns in egocentric communication networks.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
26 Aug 2023
Historique:
received: 16 03 2023
accepted: 15 08 2023
medline: 27 8 2023
pubmed: 27 8 2023
entrez: 26 8 2023
Statut: epublish

Résumé

Tie strengths in social networks are heterogeneous, with strong and weak ties playing different roles at the network and individual levels. Egocentric networks, networks of relationships around an individual, exhibit few strong ties and more weaker ties, as evidenced by electronic communication records. Mobile phone data has also revealed persistent individual differences within this pattern. However, the generality and driving mechanisms of social tie strength heterogeneity remain unclear. Here, we study tie strengths in egocentric networks across multiple datasets of interactions between millions of people during months to years. We find universality in tie strength distributions and their individual-level variation across communication modes, even in channels not reflecting offline social relationships. Via a simple model of egocentric network evolution, we show that the observed universality arises from the competition between cumulative advantage and random choice, two tie reinforcement mechanisms whose balance determines the diversity of tie strengths. Our results provide insight into the driving mechanisms of tie strength heterogeneity in social networks and have implications for the understanding of social network structure and individual behavior.

Identifiants

pubmed: 37633934
doi: 10.1038/s41467-023-40888-5
pii: 10.1038/s41467-023-40888-5
pmc: PMC10460427
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

5217

Subventions

Organisme : United States Department of Defense | United States Air Force | AFMC | Air Force Office of Scientific Research (AF Office of Scientific Research)
ID : FA8655-20-1-7020
Organisme : EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
ID : 952026
Organisme : EC | CHIST-ERA
ID : FWF I 5205-N

Informations de copyright

© 2023. Springer Nature Limited.

Références

Wasserman, S. & Faust, K. Social network analysis: Methods and applications. Cambridge University Press, Cambridge, (1994).
Tomasello M. Origins of human communication. MIT Press, Cambridge, MA, (2010).
House, J. S., Landis, K. R. & Umberson, D. Social relationships and health. Science 241, 540–545 (1988).
pubmed: 3399889 doi: 10.1126/science.3399889
Holt-Lunstad, J., Smith, T. B. & Layton, J. B. Social relationships and mortality risk: A meta-analytic review. PLoS Med. 7, e1000316 (2010).
pubmed: 20668659 pmcid: 2910600 doi: 10.1371/journal.pmed.1000316
Wellman, B. The community question: The intimate networks of East Yorkers. Am. J. Soc. 84, 1201–1231 (1979).
doi: 10.1086/226906
Nadel S. F. The theory of social structure. Routledge, London, (1957).
Borgatti, S. P., Mehra, A., Brass, D. J. & Labianca, G. Network analysis in the social sciences. Science 323, 892–895 (2009).
pubmed: 19213908 doi: 10.1126/science.1165821
Granovetter, M. S. The strength of weak ties. Am. J. Soc. 78, 1360–1380 (1973).
doi: 10.1086/225469
Onnela, J.-P. et al. Structure and tie strengths in mobile communication networks. Proc. Nat. Acad. Sci. USA 104, 7332–7336 (2007).
pubmed: 17456605 pmcid: 1863470 doi: 10.1073/pnas.0610245104
Csermely P. Weak links: Stabilizers of complex systems from proteins to social networks. Springer-Verlag, (2006).
Miller, G. A. The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychol. Rev. 63, 81 (1956).
pubmed: 13310704 doi: 10.1037/h0043158
Bernard, H. R. & Killworth, P. D. On the social structure of an ocean-going research vessel and other important things. Soc. Sci. Res. 2, 145–184 (1973).
doi: 10.1016/0049-089X(73)90016-1
Dunbar, R. I. The social brain hypothesis. Evol. Anthropol. 6, 178–190 (1998).
doi: 10.1002/(SICI)1520-6505(1998)6:5<178::AID-EVAN5>3.0.CO;2-8
Tamarit, I., Cuesta, J. A., Dunbar, R. I. M. & Sánchez, A. Cognitive resource allocation determines the organization of personal networks. Proc. Nat. Acad. Sci. USA 115, 8316–8321 (2018).
pubmed: 30049707 pmcid: 6099867 doi: 10.1073/pnas.1719233115
Gonçalves, B., Perra, N. & Vespignani, A. Modeling users’ activity on Twitter networks: Validation of Dunbar’s number. PloS ONE 6, e22656 (2011).
pubmed: 21826200 pmcid: 3149601 doi: 10.1371/journal.pone.0022656
Miritello, G. et al. Time as a limited resource: Communication strategy in mobile phone networks. Soc. Networks 35, 89–95 (2013).
doi: 10.1016/j.socnet.2013.01.003
Lerman, K. Information is not a virus, and other consequences of human cognitive limits. Future Internet 8, 21 (2016).
doi: 10.3390/fi8020021
Saramäki, J. et al. Persistence of social signatures in human communication. Proc. Natl. Acad. Sci. USA 111, 942–947 (2014).
pubmed: 24395777 pmcid: 3903242 doi: 10.1073/pnas.1308540110
Aledavood T. et al. “Channel-specific daily patterns in mobile phone communication,” in Proc. ECCS 2014, pp. 209–218, Springer, (2016).
Centellegher, S., López, E., Saramäki, J. & Lepri, B. Personality traits and ego-network dynamics. PloS ONE 12, e0173110 (2017).
pubmed: 28253333 pmcid: 5333865 doi: 10.1371/journal.pone.0173110
Heydari, S., Roberts, S. G., Dunbar, R. I. M. & Saramäki, J. Multichannel social signatures and persistent features of ego networks. Appl. Netw. Sci. 3, 8 (2018).
pubmed: 30839774 pmcid: 6214291 doi: 10.1007/s41109-018-0065-4
Li, Y. & Bond, R. Evidence of the persistence and consistency of social signatures. Appl. Netw. Sci. 7, 10 (2022).
doi: 10.1007/s41109-022-00448-0
Li, R.-D., Liu, J.-G., Guo, Q. & Zhang, Y.-C. Social signature identification of dynamical social networks. Phys. A 508, 213–222 (2018).
doi: 10.1016/j.physa.2018.05.094
Koltsova, O. Y., Mararitsa, L. V., Terpilovskii, M. A. & Sinyavskaya, Y. E. Social signature in an online environment: Stability and cognitive limits. Comput. Hum. Behav. 122, 106856 (2021).
doi: 10.1016/j.chb.2021.106856
Merton, R. K. The Matthew effect in science: The reward and communication systems of science are considered. Science 159, 56–63 (1968).
pubmed: 5634379 doi: 10.1126/science.159.3810.56
Price, D. A general theory of bibliometric and other cumulative advantage processes. J Am. Soc. Inform. Sci. 27, 292–306 (1976).
doi: 10.1002/asi.4630270505
DiPrete, T. A. & Eirich, G. M. “Cumulative advantage as a mechanism for inequality: A review of theoretical and empirical developments,” Annu. Rev. Soc., pp. 271–297, (2006).
Simon, H. A. On a class of skew distribution functions. Biometrika 42, 425–440 (1955).
doi: 10.1093/biomet/42.3-4.425
Barabási, A.-L. & Albert, R. Emergence of scaling in random networks. Science 286, 509–512 (1999).
pubmed: 10521342 doi: 10.1126/science.286.5439.509
Barrat, A., Barthélemy, M. & Vespignani, A. Weighted evolving networks: coupling topology and weight dynamics. Phys. Rev. Lett. 92, 228701 (2004).
pubmed: 15245264 doi: 10.1103/PhysRevLett.92.228701
Toivonen, R. et al. A comparative study of social network models: Network evolution models and nodal attribute models. Soc. Networks 31, 240–254 (2009).
doi: 10.1016/j.socnet.2009.06.004
Karimi, F., Génois, M., Wagner, C., Singer, P. & Strohmaier, M. Homophily influences ranking of minorities in social networks. Sci. Rep. 8, 1–12 (2018).
doi: 10.1038/s41598-018-29405-7
Onnela, J.-P. et al. Analysis of a large-scale weighted network of one-to-one human communication. New J. Phys. 9, 179 (2007).
doi: 10.1088/1367-2630/9/6/179
Karsai, M. et al. Small but slow world: How network topology and burstiness slow down spreading. Phys. Rev. E 83, 025102 (2011).
doi: 10.1103/PhysRevE.83.025102
Kivelä, M. et al. Multiscale analysis of spreading in a large communication network. J. Stat. Mech. 2012, P03005 (2012).
doi: 10.1088/1742-5468/2012/03/P03005
Kovanen, L., Kaski, K., Kertész, J. & Saramäki, J. Temporal motifs reveal homophily, gender-specific patterns, and group talk in call sequences. Proc. Natl. Acad. Sci. USA 110, 18070–18075 (2013).
pubmed: 24145424 pmcid: 3831467 doi: 10.1073/pnas.1307941110
Unicomb, S., Iñiguez, G. & Karsai, M. Threshold driven contagion on weighted networks. Sci. Rep. 8, 1–10 (2018).
doi: 10.1038/s41598-018-21261-9
Ebel, H., Mielsch, L.-I. & Bornholdt, S. Scale-free topology of e-mail networks. Phys. Rev. E 66, 035103 (2002).
doi: 10.1103/PhysRevE.66.035103
Saramäki, J. & Holme, P. Exploring temporal networks with greedy walks. Eur. Phys. J. B 88, 334 (2015).
doi: 10.1140/epjb/e2015-60660-9
Viswanath, B., Mislove, A., Cha, M., & Gummadi, K. P. “On the evolution of user interaction in Facebook,” in Proceedings of the 2nd ACM workshop on Online social networks, pp. 37–42, (2009).
Wu, Y., Zhou, C., Xiao, J., Kurths, J. & Schellnhuber, H. J. Evidence for a bimodal distribution in human communication. Proc. Natl. Acad. Sci. USA 107, 18803–18808 (2010).
pubmed: 20959414 pmcid: 2973857 doi: 10.1073/pnas.1013140107
Said, A., De Luca, E. W., & Albayrak, S. “How social relationships affect user similarities,” in Proc. of the 2010 workshop on social recommender systems, pp. 1–4, (2010).
Karimi, F., Ramenzoni, V. C. & Holme, P. Structural differences between open and direct communication in an online community. Phys. A 414, 263–273 (2014).
doi: 10.1016/j.physa.2014.07.037
Goh, K.-I. & Barabási, A.-L. Burstiness and memory in complex systems. Europhys. Lett. 81, 48002 (2008).
doi: 10.1209/0295-5075/81/48002
Reid, D. J. & Reid, F. J. “Textmates and text circles: Insights into the social ecology of sms text messaging,” in Mobile World: Past, Present and Future (L. Hamill and A. Lasen, eds.), pp. 105–118, Springer, New York, (2005).
Arnaboldi, V., Guazzini, A. & Passarella, A. Egocentric online social networks: Analysis of key features and prediction of tie strength in Facebook. Comput. Commun. 36, 1130–1144 (2013).
doi: 10.1016/j.comcom.2013.03.003
Iñiguez, G., Pineda, C., Gershenson, C. & Barabási, A.-L. Dynamics of ranking. Nat. Commun. 13, 1–7 (2022).
doi: 10.1038/s41467-022-29256-x
Newman, M. E. Clustering and preferential attachment in growing networks. Phys. Rev. E 64, 025102 (2001).
doi: 10.1103/PhysRevE.64.025102
Jeong, H., Néda, Z. & Barabási, A.-L. Measuring preferential attachment in evolving networks. Europhys. Lett. 61, 567 (2003).
doi: 10.1209/epl/i2003-00166-9
Pham, T., Sheridan, P. & Shimodaira, H. Pafit: A statistical method for measuring preferential attachment in temporal complex networks. PloS ONE 10, e0137796 (2015).
pubmed: 26378457 pmcid: 4574777 doi: 10.1371/journal.pone.0137796
Krapivsky, P. L. & Redner, S. Organization of growing random networks. Phys. Rev. E 63, 066123 (2001).
doi: 10.1103/PhysRevE.63.066123
Eriksen, K. A. & Hörnquist, M. Scale-free growing networks imply linear preferential attachment. Phys. Rev. E 65, 017102 (2001).
doi: 10.1103/PhysRevE.65.017102
Bianconi, G. & Barabási, A.-L. Competition and multiscaling in evolving networks. Europhys. Lett. 54, 436 (2001).
doi: 10.1209/epl/i2001-00260-6
Price D. “Networks of scientific papers,” Science, pp. 510–515, (1965).
Clauset, A., Shalizi, C. R. & Newman, M. E. J. Power-law distributions in empirical data. SIAM Rev. 51, 661–703 (2009).
doi: 10.1137/070710111
Morales, J. A. et al. Generic temporal features of performance rankings in sports and games. EPJ Data Sci. 5, 33 (2016).
doi: 10.1140/epjds/s13688-016-0096-y
Voitalov, I., van der Hoorn, P., van der Hofstad, R. & Krioukov, D. Scale-free networks well done. Phys. Rev. Res. 1, 033034 (2019).
doi: 10.1103/PhysRevResearch.1.033034
Stephens, M. A. EDF statistics for goodness of fit and some comparisons. J. Am. Stat. Assoc. 69, 730–737 (1974).
doi: 10.1080/01621459.1974.10480196
McPherson, M., Smith-Lovin, L. & Cook, J. M. Birds of a feather: Homophily in social networks. Annu. Rev. Soc. 27, 415–444 (2001).
doi: 10.1146/annurev.soc.27.1.415
Swickert, R. J., Rosentreter, C. J., Hittner, J. B. & Mushrush, J. E. Extraversion, social support processes, and stress. Pers. Indiv. Differ. 32, 877–891 (2002).
doi: 10.1016/S0191-8869(01)00093-9
Costa Jr, P. T. & McCrae, R. R. Four ways five factors are basic. Pers. Indiv. Differ. 13, 653–665 (1992).
doi: 10.1016/0191-8869(92)90236-I
Török, J., Murase, Y., Jo, H.-H., Kertész, J. & Kaski, K. What big data tells: Sampling the social network by communication channels. Phys. Rev. E 94, 052319 (2016).
pubmed: 27967040 doi: 10.1103/PhysRevE.94.052319
Kock, N. Media richness or media naturalness? The evolution of our biological communication apparatus and its influence on our behavior toward e-communication tools. IEEE T. Prof. Commun. 48, 117–130 (2005).
doi: 10.1109/TPC.2005.849649
DiMaggio, P. & Garip, F. Network effects and social inequality. Annu. Rev. Soc. 38, 93–118 (2012).
doi: 10.1146/annurev.soc.012809.102545
Kossinets, G. & Watts, D. J. Origins of homophily in an evolving social network. Am. J. Soc. 115, 405–450 (2009).
doi: 10.1086/599247
Asikainen, A., Iñiguez, G., Ureña-Carrión, J., Kaski, K. & Kivelä, M. Cumulative effects of triadic closure and homophily in social networks. Sci. Adv. 6, eaax7310 (2020).
pubmed: 32426484 pmcid: 7209984 doi: 10.1126/sciadv.aax7310
Vlahovic, T. A., Roberts, S. & Dunbar, R. Effects of duration and laughter on subjective happiness within different modes of communication. J. Comp.-Med. Commun. 17, 436–450 (2012).
Daft, R. L. & Lengel, R. H. Organizational information requirements, media richness and structural design. Manag. Sci. 32, 554–571 (1986).
doi: 10.1287/mnsc.32.5.554
Fratiglioni, L., Paillard-Borg, S. & Winblad, B. An active and socially integrated lifestyle in late life might protect against dementia. Lancet Neurol. 3, 343–353 (2004).
pubmed: 15157849 doi: 10.1016/S1474-4422(04)00767-7
Cohen, S. & Janicki-Deverts, D. Can we improve our physical health by altering our social networks? Perspect. Psychol. Sci. 4, 375–378 (2009).
pubmed: 20161087 pmcid: 2744289 doi: 10.1111/j.1745-6924.2009.01141.x
Quercia, D. Lambiotte, R., Stillwell, D., Kosinski, M. & Crowcroft, J. “The personality of popular Facebook users,” in Proceedings of the ACM 2012 Conference on Computer Supported Cooperative Work, pp. 955–964, (2012).
Staiano J. et al. “Friends don’t lie: Inferring personality traits from social network structure,” in Proceedings of the 2012 ACM Conference on Ubiquitous Computing, pp. 321–330, (2012).
Friggeri, A., Lambiotte, R., Kosinski, M., & Fleury, E. “Psychological aspects of social communities,” in 2012 International Conference on Social Computing, pp. 195–202, IEEE, (2012).
Iñiguez, G., Heydari, S., Kertész, J. & Saramäki, J. “Universal patterns in egocentric communication networks,” https://doi.org/10.5281/zenodo.8234050 (2023).
Stopczynski, A. et al. Measuring large-scale social networks with high resolution. PloS ONE 9, e95978 (2014).
pubmed: 24770359 pmcid: 4000208 doi: 10.1371/journal.pone.0095978
Sapiezynski, P., Stopczynski, A., Lassen, D. D. & Lehmann, S. Interaction data from the Copenhagen Networks Study. Sci. Data 6, 1–10 (2019).
doi: 10.1038/s41597-019-0325-x

Auteurs

Gerardo Iñiguez (G)

Department of Network and Data Science, Central European University, 1100, Vienna, Austria. iniguezg@ceu.edu.
Department of Computer Science, Aalto University School of Science, 00076, Aalto, Finland. iniguezg@ceu.edu.
Faculty of Information Technology and Communication Sciences, Tampere University, 33720, Tampere, Finland. iniguezg@ceu.edu.
Centro de Ciencias de la Complejidad, Universidad Nacional Autonóma de México, 04510, Ciudad de México, Mexico. iniguezg@ceu.edu.

Sara Heydari (S)

Department of Computer Science, Aalto University School of Science, 00076, Aalto, Finland.

János Kertész (J)

Department of Network and Data Science, Central European University, 1100, Vienna, Austria.
Complexity Science Hub, 1080, Vienna, Austria.

Jari Saramäki (J)

Department of Computer Science, Aalto University School of Science, 00076, Aalto, Finland. jari.saramaki@aalto.fi.

Classifications MeSH