SynRoute: A Retrosynthetic Planning Software.


Journal

Journal of chemical information and modeling
ISSN: 1549-960X
Titre abrégé: J Chem Inf Model
Pays: United States
ID NLM: 101230060

Informations de publication

Date de publication:
11 09 2023
Historique:
medline: 12 9 2023
pubmed: 28 8 2023
entrez: 28 8 2023
Statut: ppublish

Résumé

Computer-assisted synthetic planning has seen major advancements that stem from the availability of large reaction databases and artificial intelligence methodologies. SynRoute is a new retrosynthetic planning software tool that uses a relatively small number of general reaction templates, currently 263, along with a literature-based reaction database to find short, practical synthetic routes for target compounds. For each reaction template, a machine learning classifier is trained using data from the Pistachio reaction database to predict whether new computer-generated reactions based on the template are likely to work experimentally in the laboratory. This reaction generation methodology is used together with a vectorized Dijkstra-like search of top-scoring routes organized by synthetic strategies for easy browsing by a synthetic chemist. SynRoute was able to find routes for an average of 83% of compounds based on selection of random subsets of drug-like compounds from the ChEMBL database. Laboratory evaluation of 12 routes produced by SynRoute, to synthesize compounds not from the previous random subsets, demonstrated the ability to produce feasible overall synthetic strategies for all compounds evaluated.

Identifiants

pubmed: 37635298
doi: 10.1021/acs.jcim.3c00491
pmc: PMC10498441
doi:

Types de publication

Journal Article Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Pagination

5484-5495

Références

J Chem Inf Model. 2023 Apr 10;63(7):1914-1924
pubmed: 36952584
J Cheminform. 2022 Mar 15;14(1):15
pubmed: 35292121
RSC Adv. 2022 Nov 8;12(49):32020-32026
pubmed: 36380947
J Chem Inf Model. 2019 Jun 24;59(6):2529-2537
pubmed: 31190540
Nature. 2018 Mar 28;555(7698):604-610
pubmed: 29595767
Angew Chem Int Ed Engl. 2016 May 10;55(20):5904-37
pubmed: 27062365
J Chem Inf Model. 2022 Jan 10;62(1):16-26
pubmed: 34939786
Science. 1969 Oct 10;166(3902):178-92
pubmed: 17731475
J Med Chem. 2011 May 26;54(10):3451-79
pubmed: 21504168
Angew Chem Int Ed Engl. 2021 Dec 6;60(50):26226-26232
pubmed: 34558168
Nature. 2020 Dec;588(7836):83-88
pubmed: 33049755
Angew Chem Int Ed Engl. 2020 Jan 7;59(2):725-730
pubmed: 31750610
ACS Cent Sci. 2019 Sep 25;5(9):1572-1583
pubmed: 31572784
J Cheminform. 2020 Nov 17;12(1):70
pubmed: 33292482
J Cheminform. 2013 May 21;5:24
pubmed: 23694746
J Org Chem. 1988 May 1;53(11):2504-20
pubmed: 23782105
J Cheminform. 2009 Jun 10;1(1):8
pubmed: 20298526
Science. 2019 Aug 9;365(6453):
pubmed: 31395756
J Chem Inf Model. 2020 Jul 27;60(7):3398-3407
pubmed: 32568548

Auteurs

Mario Latendresse (M)

SRI International, 333 Ravenswood Ave, Menlo Park, California 94025, United States.

Jeremiah P Malerich (JP)

SRI International, 333 Ravenswood Ave, Menlo Park, California 94025, United States.

James Herson (J)

SRI International, 333 Ravenswood Ave, Menlo Park, California 94025, United States.

Markus Krummenacker (M)

SRI International, 333 Ravenswood Ave, Menlo Park, California 94025, United States.

Judy Szeto (J)

SRI International, 333 Ravenswood Ave, Menlo Park, California 94025, United States.

Vi-Anh Vu (VA)

SRI International, 333 Ravenswood Ave, Menlo Park, California 94025, United States.

Nathan Collins (N)

SRI International, 333 Ravenswood Ave, Menlo Park, California 94025, United States.

Peter B Madrid (PB)

SRI International, 333 Ravenswood Ave, Menlo Park, California 94025, United States.

Articles similaires

Selecting optimal software code descriptors-The case of Java.

Yegor Bugayenko, Zamira Kholmatova, Artem Kruglov et al.
1.00
Software Algorithms Programming Languages

Exploring blood-brain barrier passage using atomic weighted vector and machine learning.

Yoan Martínez-López, Paulina Phoobane, Yanaima Jauriga et al.
1.00
Blood-Brain Barrier Machine Learning Humans Support Vector Machine Software

Understanding the role of machine learning in predicting progression of osteoarthritis.

Simone Castagno, Benjamin Gompels, Estelle Strangmark et al.
1.00
Humans Disease Progression Machine Learning Osteoarthritis
Humans Artificial Intelligence COVID-19 SARS-CoV-2 Pandemics

Classifications MeSH