Bioorthogonal Caging-Group-Free Photoactivatable Probes for Minimal-Linkage-Error Nanoscopy.


Journal

ACS central science
ISSN: 2374-7943
Titre abrégé: ACS Cent Sci
Pays: United States
ID NLM: 101660035

Informations de publication

Date de publication:
23 Aug 2023
Historique:
received: 20 06 2023
medline: 28 8 2023
pubmed: 28 8 2023
entrez: 28 8 2023
Statut: epublish

Résumé

Here we describe highly compact, click compatible, and photoactivatable dyes for super-resolution fluorescence microscopy (nanoscopy). By combining the photoactivatable xanthone (PaX) core with a tetrazine group, we achieve minimally sized and highly sensitive molecular dyads for the selective labeling of unnatural amino acids introduced by genetic code expansion. We exploit the excited state quenching properties of the tetrazine group to attenuate the photoactivation rates of the PaX, and further reduce the overall fluorescence emission of the photogenerated fluorophore, providing two mechanisms of selectivity to reduce the off-target signal. Coupled with MINFLUX nanoscopy, we employ our dyads in the minimal-linkage-error imaging of vimentin filaments, demonstrating molecular-scale precision in fluorophore positioning.

Identifiants

pubmed: 37637742
doi: 10.1021/acscentsci.3c00746
pmc: PMC10450876
doi:

Types de publication

Journal Article

Langues

eng

Pagination

1581-1590

Informations de copyright

© 2023 The Authors. Published by American Chemical Society.

Déclaration de conflit d'intérêts

The authors declare the following competing financial interest(s): R.L., M.L.B., and A.N.B. are co-inventors of a patent application covering the photoactivatable dyes of this work, filed by the Max Planck Society. S.W.H. owns shares of Abberior GmbH and Abberior Instruments GmbH whose dyes and MINFLUX microscope, respectively, have also been used in this study.

Références

Nat Methods. 2020 Feb;17(2):217-224
pubmed: 31932776
Nat Chem. 2022 Sep;14(9):1013-1020
pubmed: 35864152
Science. 2023 Mar 10;379(6636):1004-1010
pubmed: 36893244
Nat Rev Mol Cell Biol. 2017 Nov;18(11):685-701
pubmed: 28875992
Chem Sci. 2017 Feb 1;8(2):1506-1510
pubmed: 28572909
ACS Chem Biol. 2018 Feb 16;13(2):475-480
pubmed: 28933823
J Am Chem Soc. 2023 Jan 25;145(3):1530-1534
pubmed: 36626161
J Am Chem Soc. 2015 Sep 9;137(35):11461-75
pubmed: 26270632
Chem Sci. 2020 Feb 10;11(11):3042-3047
pubmed: 34122808
J Struct Biol. 2007 Jun;158(3):378-85
pubmed: 17289402
Angew Chem Int Ed Engl. 2014 Feb 17;53(8):2245-9
pubmed: 24474648
J Am Chem Soc. 2020 Jul 22;142(29):12681-12689
pubmed: 32594743
J Am Chem Soc. 2020 May 27;142(21):9625-9633
pubmed: 32343567
J Am Chem Soc. 2017 May 17;139(19):6611-6620
pubmed: 28437075
Nat Methods. 2022 Aug;19(8):986-994
pubmed: 35915194
J Am Chem Soc. 2019 Jan 16;141(2):981-989
pubmed: 30562459
Chem Soc Rev. 2013 Jun 21;42(12):5131-42
pubmed: 23563107
J Am Chem Soc. 2018 Jan 24;140(3):974-983
pubmed: 29240995
PLoS One. 2011 Mar 29;6(3):e17896
pubmed: 21479270
Annu Rev Biophys. 2022 May 9;51:301-326
pubmed: 35119945
Angew Chem Int Ed Engl. 2016 Dec 23;55(52):16172-16176
pubmed: 27804198
J Am Chem Soc. 2022 May 11;144(18):8171-8177
pubmed: 35500228
Proc Natl Acad Sci U S A. 2021 Apr 6;118(14):
pubmed: 33782137
Chem Commun (Camb). 2017 Dec 19;54(1):102-105
pubmed: 29214255
Angew Chem Int Ed Engl. 2016 Jan 26;55(5):1723-7
pubmed: 26661345
Org Biomol Chem. 2019 Jan 2;17(2):215-233
pubmed: 30539944
Chembiochem. 2012 Sep 24;13(14):2094-9
pubmed: 22945333
Angew Chem Int Ed Engl. 2010 May 3;49(20):3520-3
pubmed: 20391447
J Mol Biol. 2022 Apr 30;434(8):167248
pubmed: 34547330
JACS Au. 2021 May 24;1(5):690-696
pubmed: 34056637
Proc Natl Acad Sci U S A. 2022 Jul 19;119(29):e2201861119
pubmed: 35858298
J Am Chem Soc. 2023 Mar 8;145(9):5125-5133
pubmed: 36815733
Angew Chem Int Ed Engl. 2020 Jan 7;59(2):804-810
pubmed: 31638314
Angew Chem Int Ed Engl. 2011 Apr 18;50(17):3878-81
pubmed: 21433234
Proc Natl Acad Sci U S A. 2012 Aug 21;109(34):13620-5
pubmed: 22869704
ACS Cent Sci. 2021 Sep 22;7(9):1561-1571
pubmed: 34584958
Commun Biol. 2019 Jul 19;2:261
pubmed: 31341960
Bioconjug Chem. 2018 Apr 18;29(4):1312-1318
pubmed: 29431990
Nat Methods. 2011 Nov 06;8(12):1027-36
pubmed: 22056676
Small. 2023 Mar;19(12):e2206026
pubmed: 36642798
Nat Commun. 2018 Mar 2;9(1):930
pubmed: 29500346
Nat Photonics. 2021 May;15(5):361-366
pubmed: 33953795
Sci Adv. 2022 Feb 25;8(8):eabm2696
pubmed: 35213220
Chem Sci. 2017 Jan 1;8(1):559-566
pubmed: 28451202
J Am Chem Soc. 2012 Jun 27;134(25):10317-20
pubmed: 22694658
J Mol Biol. 2004 Jun 25;340(1):97-114
pubmed: 15184025
Science. 2023 Mar 10;379(6636):1010-1015
pubmed: 36893247
Nat Biotechnol. 2023 Apr;41(4):569-576
pubmed: 36344840
Science. 2017 Feb 10;355(6325):606-612
pubmed: 28008086
Chem Soc Rev. 2017 Aug 14;46(16):4895-4950
pubmed: 28660957
ACS Synth Biol. 2017 Jun 16;6(6):1076-1085
pubmed: 28230975
Science. 2019 Mar 29;363(6434):
pubmed: 30923194
ACS Chem Biol. 2021 Nov 19;16(11):2130-2136
pubmed: 34734690

Auteurs

Ayse Aktalay (A)

Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany.

Richard Lincoln (R)

Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany.

Lukas Heynck (L)

Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany.

Maria Augusta do R B F Lima (MADRBF)

Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany.

Alexey N Butkevich (AN)

Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany.

Mariano L Bossi (ML)

Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany.

Stefan W Hell (SW)

Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany.
Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany.

Classifications MeSH