Development of peak alpha frequency reflects a distinct trajectory of neural maturation in autistic children.


Journal

Autism research : official journal of the International Society for Autism Research
ISSN: 1939-3806
Titre abrégé: Autism Res
Pays: United States
ID NLM: 101461858

Informations de publication

Date de publication:
Nov 2023
Historique:
received: 07 01 2023
accepted: 05 08 2023
medline: 23 11 2023
pubmed: 28 8 2023
entrez: 28 8 2023
Statut: ppublish

Résumé

Electroencephalographic peak alpha frequency (PAF) is a marker of neural maturation that increases with age throughout childhood. Distinct maturation of PAF is observed in children with autism spectrum disorder such that PAF does not increase with age and is instead positively associated with cognitive ability. The current study clarifies and extends previous findings by characterizing the effects of age and cognitive ability on PAF between diagnostic groups in a sample of children and adolescents with and without autism spectrum disorder. Resting EEG data and behavioral measures were collected from 45 autistic children and 34 neurotypical controls aged 8 to 18 years. Utilizing generalized additive models to account for nonlinear relations, we examined differences in the joint effect of age and nonverbal IQ by diagnosis as well as bivariate relations between age, nonverbal IQ, and PAF across diagnostic groups. Age was positively associated with PAF among neurotypical children but not among autistic children. In contrast, nonverbal IQ but not age was positively associated with PAF among autistic children. Models accounting for nonlinear relations revealed different developmental trajectories as a function of age and cognitive ability based on diagnostic status. Results align with prior evidence indicating that typical age-related increases in PAF are absent in autistic children and that PAF instead increases with cognitive ability in these children. Findings suggest the potential of PAF to index distinct trajectories of neural maturation in autistic children.

Identifiants

pubmed: 37638733
doi: 10.1002/aur.3017
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

2077-2089

Subventions

Organisme : NIMH NIH HHS
ID : NIMH U19 MH108206
Pays : United States
Organisme : NIMH NIH HHS
ID : NIMH R21 MH122202
Pays : United States
Organisme : NIMH NIH HHS
ID : NIMH R01 MH107426
Pays : United States
Organisme : NIMH NIH HHS
ID : NIMH R01 MH100173
Pays : United States
Organisme : NIMH NIH HHS
ID : NIMH U19 MH108206
Pays : United States
Organisme : NIMH NIH HHS
ID : NIMH R21 MH122202
Pays : United States
Organisme : NIMH NIH HHS
ID : NIMH R01 MH107426
Pays : United States
Organisme : NIMH NIH HHS
ID : NIMH R01 MH100173
Pays : United States

Informations de copyright

© 2023 International Society for Autism Research and Wiley Periodicals LLC.

Références

American Psychiatric Association. (2000). Diagnostic and statistical manual of mental disorders (DSM-IV-TR) (4th ed.). American Psychiatric Association.
Autism and Developmental Disabilities Monitoring Network Surveillance Year 2010 Principal Investigators. (2014). Prevalence of autism spectrum disorder among children aged 8 years-autism and developmental disabilities monitoring network, 11 sites, United States, 2010. Morbidity and Mortality Weekly Report Surveillance Summary, 63(2), 1-21.
Barry, R. J., Clarke, A. R., Johnstone, S. J., Magee, C. A., & Rushby, J. A. (2007). EEG differences between eyes-closed and eyes-open resting conditions. Clinical Neurophysiology, 118(12), 2765-2773. https://doi.org/10.1016/j.clinph.2007.07.028
Britton, J. W., Frey, L. C., Hopp, J. L., Korb, P., Koubeissi, M. Z., Lievens, W. E., Pestana-Knight, E. M., & St Louis, E. (2016). Electroencephalography (EEG): An introductory text and atlas of normal and abnormal findings in adults, children, and infants. American Epilepsy Society.
Carter Leno, V., Tomlinson, S. B., Chang, S. A., Naples, A. J., & McPartland, J. C. (2018). Resting-state alpha power is selectively associated with autistic traits reflecting behavioral rigidity. Scientific Reports, 8(1), 11982. https://doi.org/10.1038/s41598-018-30445-2
Cellier, D., Riddle, J., Petersen, I., & Hwang, K. (2021). The development of theta and alpha neural oscillations from ages 3 to 24 years. Developmental Cognitive Neuroscience, 50, 100969. https://doi.org/10.1016/j.dcn.2021.100969
Chapeton, J. I., Haque, R., Wittig, J. H., Inati, S. K., & Zaghloul, K. A. (2019). Large-scale communication in the human brain is rhythmically modulated through alpha coherence. Current Biology, 29(17), 2801. https://doi.org/10.1016/j.cub.2019.07.014
Chiang, A. K., Rennie, C. J., Robinson, P. A., van Albada, S. J., & Kerr, C. C. (2011). Age trends and sex differences of alpha rhythms including split alpha peaks. Clinical Neurophysiology, 122(8), 1505-1517. https://doi.org/10.1016/j.clinph.2011.01.040
Coben, R., Clarke, A. R., Hudspeth, W., & Barry, R. J. (2008). EEG power and coherence in autistic spectrum disorder. Clinical Neurophysiology, 119(5), 1002-1009. https://doi.org/10.1016/j.clinph.2008.01.013
Constantino, J. N., & Gruber, C. P. (2012). Social responsiveness scale: SRS-2. Western psychological services Torrance.
Coolican, J., Bryson, S. E., & Zwaigenbaum, L. (2008). Brief report: Data on the Stanford-Binet intelligence scales (5th ed.) in children with autism spectrum disorder. Journal of Autism and Developmental Disorders, 38(1), 190-197. https://doi.org/10.1007/s10803-007-0368-2
Cornew, L., Roberts, T. P., Blaskey, L., & Edgar, J. C. (2012). Resting-state oscillatory activity in autism spectrum disorders. Journal of Autism and Developmental Disorders, 42(9), 1884-1894. https://doi.org/10.1007/s10803-011-1431-6
Cragg, L., Kovacevic, N., McIntosh, A. R., Poulsen, C., Martinu, K., Leonard, G., & Paus, T. (2011). Maturation of EEG power spectra in early adolescence: A longitudinal study. Developmental Science, 14(5), 935-943. https://doi.org/10.1111/j.1467-7687.2010.01031.x
Deco, G., Jirsa, V. K., & McIntosh, A. R. (2011). Emerging concepts for the dynamical organization of resting-state activity in the brain. Nature Reviews Neuroscience, 12(1), 43-56.
Dickinson, A., DiStefano, C., Senturk, D., & Jeste, S. S. (2018). Peak alpha frequency is a neural marker of cognitive function across the autism spectrum. The European Journal of Neuroscience, 47(6), 643-651. https://doi.org/10.1111/ejn.13645
Dickinson, A., Jeste, S., & Milne, E. (2022). Electrophysiological signatures of brain aging in autism spectrum disorder. Cortex, 148, 139-151. https://doi.org/10.1016/j.cortex.2021.09.022
Donoghue, T., Haller, M., Peterson, E. J., Varma, P., Sebastian, P., Gao, R., Noto, T., Lara, A. H., Wallis, J. D., Knight, R. T., Shestyuk, A., & Voytek, B. (2020). Parameterizing neural power spectra into periodic and aperiodic components. Nature Neuroscience, 23(12), 1655-1665. https://doi.org/10.1038/s41593-020-00744-x
Edgar, J. C., Dipiero, M., McBride, E., Green, H. L., Berman, J., Ku, M., Liu, S., Blaskey, L., Kuschner, E., Airey, M., Ross, J. L., Bloy, L., Kim, M., Koppers, S., Gaetz, W., Schultz, R. T., & Roberts, T. P. L. (2019). Abnormal maturation of the resting-state peak alpha frequency in children with autism spectrum disorder. Human Brain Mapping, 40(11), 3288-3298. https://doi.org/10.1002/hbm.24598
Edgar, J. C., Heiken, K., Chen, Y. H., Herrington, J. D., Chow, V., Liu, S., Bloy, L., Huang, M., Pandey, J., Cannon, K. M., Qasmieh, S., Levy, S. E., Schultz, R. T., & Roberts, T. P. (2015). Resting-state alpha in autism spectrum disorder and alpha associations with thalamic volume. Journal of Autism and Developmental Disorders, 45(3), 795-804. https://doi.org/10.1007/s10803-014-2236-1
Elliot, C. (2007). Differential abilities scale-2nd edition (DAS-II) manual. Harcourt Assessment, Inc.
Feige, B., Scheffler, K., Esposito, F., Di Salle, F., Hennig, J., & Seifritz, E. (2005). Cortical and subcortical correlates of electroencephalographic alpha rhythm modulation. Journal of Neurophysiology, 93(5), 2864-2872.
Feinberg, I. (1982). Schizophrenia: Caused by a fault in programmed synaptic elimination during adolescence? Journal of Psychiatric Research, 17(4), 319-334. https://doi.org/10.1016/0022-3956(82)90038-3
Fonseca, L. C., Tedrus, G. M., Chiodi, M. G., Cerqueira, J. N., & Tonelotto, J. M. (2006). Quantitative EEG in children with learning disabilities: Analysis of band power. Arquivos de Neuro-Psiquiatria, 64(2B), 376-381. https://doi.org/10.1590/s0004-282x2006000300005
Freschl, J., Azizi, L. A., Balboa, L., Kaldy, Z., & Blaser, E. (2022). The development of peak alpha frequency from infancy to adolescence and its role in visual temporal processing: A meta-analysis. Developmental Cognitive Neuroscience, 57, 101146. https://doi.org/10.1016/j.dcn.2022.101146
Gasser, T., Verleger, R., Bacher, P., & Sroka, L. (1988). Development of the EEG of school-age children and adolescents. I. Analysis of band power. Electroencephalography and Clinical Neurophysiology, 69(2), 91-99. https://doi.org/10.1016/0013-4694(88)90204-0
Ghazi, T. R., Blacker, K. J., Hinault, T. T., & Courtney, S. M. (2021). Modulation of peak alpha frequency oscillations during working memory is greater in females than males. Frontiers in Human Neuroscience, 15, 626406.
Grandy, T. H., Werkle-Bergner, M., Chicherio, C., Lovden, M., Schmiedek, F., & Lindenberger, U. (2013). Individual alpha peak frequency is related to latent factors of general cognitive abilities. NeuroImage, 79, 10-18. https://doi.org/10.1016/j.neuroimage.2013.04.059
Green, H. L., Dipiero, M., Koppers, S., Berman, J. I., Bloy, L., Liu, S., McBride, E., Ku, M., Blaskey, L., Kuschner, E., Airey, M., Kim, M., Konka, K., Roberts, T. P. L., & Edgar, J. C. (2022). Peak alpha frequency and thalamic structure in children with typical development and autism spectrum disorder. Journal of Autism and Developmental Disorders, 52(1), 103-112.
Haegens, S., Cousijn, H., Wallis, G., Harrison, P. J., & Nobre, A. C. (2014). Inter- and intra-individual variability in alpha peak frequency. NeuroImage, 92, 46-55. https://doi.org/10.1016/j.neuroimage.2014.01.049
Halgren, M., Ulbert, I., Bastuji, H., Fabo, D., Eross, L., Rey, M., Devinsky, O., Doyle, W. K., Mak-McCully, R., Halgren, E., Wittner, L., Chauvel, P., Heit, G., Eskandar, E., Mandell, A., & Cash, S. S. (2019). The generation and propagation of the human alpha rhythm. Proceedings of the National Academy of Sciences of the United States of America, 116(47), 23772-23782. https://doi.org/10.1073/pnas.1913092116
Hashemi, A., Pino, L. J., Moffat, G., Mathewson, K. J., Aimone, C., Bennett, P. J., Schmidt, L. A., & Sekuler, A. B. (2016). Characterizing population EEG dynamics throughout adulthood. eNeuro, 3(6), 16. https://doi.org/10.1523/ENEURO.0275-16.2016
Hastie, T., & Tibshirani, R. (1990). Generalized additive models (1st ed.). Chapman and Hall.
Hughes, S. W., Lőrincz, M. L., Blethyn, K., Kékesi, K. A., Juhász, G., Turmaine, M., Parnavelas, J. G., & Crunelli, V. (2011). Thalamic gap junctions control local neuronal synchrony and influence macroscopic oscillation amplitude during EEG alpha rhythms. Frontiers in Psychology, 2, 193.
Isler, J. R., Pini, N., Lucchini, M., Shuffrey, L. C., Morales, S., Bowers, M. E., Leach, S. C., Sania, A., Wang, L., Condon, C., Nugent, J. D., Elliott, A. J., Friedrich, C., Andrew, R., Fox, N. A., Myers, M. M., & Fifer, W. P. (2022). Longitudinal characterization of EEG power spectra during eyes open and eyes closed conditions in children. Psychophysiology, 60, e14158. https://doi.org/10.1111/psyp.14158
Keehn, B., Westerfield, M., Muller, R. A., & Townsend, J. (2017). Autism, attention, and alpha oscillations: An electrophysiological study of attentional capture. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2(6), 528-536. https://doi.org/10.1016/j.bpsc.2017.06.006
Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Research. Brain Research Reviews, 29(2-3), 169-195. https://doi.org/10.1016/s0165-0173(98)00056-3
Klimesch, W. (2012). Alpha-band oscillations, attention, and controlled access to stored information. Trends in Cognitive Sciences, 16(12), 606-617.
Klimesch, W., Sauseng, P., & Hanslmayr, S. (2007). EEG alpha oscillations: The inhibition-timing hypothesis. Brain Research Reviews, 53(1), 63-88. https://doi.org/10.1016/j.brainresrev.2006.06.003
Levin, A. R., Naples, A. J., Scheffler, A. W., Webb, S. J., Shic, F., Sugar, C. A., Murias, M., Bernier, R. A., Chawarska, K., Dawson, G., Faja, S., Jeste, S., Nelson, C. A., McPartland, J. C., & Senturk, D. (2020). Day-to-day test-retest reliability of EEG profiles in children with autism spectrum disorder and typical development. Frontiers in Integrative Neuroscience, 14, 21. https://doi.org/10.3389/fnint.2020.00021
Lincoln, A., Courchesne, E., Allen, M., Hanson, E., & Ene, M. (1998). Neurobiology of Asperger syndrome. In E. Schopler, G. B. Mesibov, & L. J. Kunce (Eds.), Asperger syndrome or high-functioning autism? (pp. 145-163). Springer US. https://doi.org/10.1007/978-1-4615-5369-4_8
Lord, C. R. M., DiLavore, P. C., Risi, S., Gotham, K., & Bishop, S. (2012). Autism diagnostic observation schedule, Second Edition (ADOS-2). Western Psychological Services.
Luckhaus, C., Grass-Kapanke, B., Blaeser, I., Ihl, R., Supprian, T., Winterer, G., Zielasek, J., & Brinkmeyer, J. (2008). Quantitative EEG in progressing vs stable mild cognitive impairment (MCI): Results of a 1-year follow-up study. International Journal of Geriatric Psychiatry, 23(11), 1148-1155. https://doi.org/10.1002/gps.2042
Mathewson, K. J., Jetha, M. K., Drmic, I. E., Bryson, S. E., Goldberg, J. O., & Schmidt, L. A. (2012). Regional EEG alpha power, coherence, and behavioral symptomatology in autism spectrum disorder. Clinical Neurophysiology, 123(9), 1798-1809. https://doi.org/10.1016/j.clinph.2012.02.061
McEvoy, K., Hasenstab, K., Senturk, D., Sanders, A., & Jeste, S. S. (2015). Physiologic artifacts in resting state oscillations in young children: Methodological considerations for noisy data. Brain Imaging and Behavior, 9(1), 104-114. https://doi.org/10.1007/s11682-014-9343-7
Meghdadi, A. H., Stevanovic Karic, M., McConnell, M., Rupp, G., Richard, C., Hamilton, J., Salat, D., & Berka, C. (2021). Resting state EEG biomarkers of cognitive decline associated with Alzheimer's disease and mild cognitive impairment. PLoS One, 16(2), e0244180. https://doi.org/10.1371/journal.pone.0244180
Miskovic, V., Ma, X., Chou, C. A., Fan, M., Owens, M., Sayama, H., & Gibb, B. E. (2015). Developmental changes in spontaneous electrocortical activity and network organization from early to late childhood. NeuroImage, 118, 237-247. https://doi.org/10.1016/j.neuroimage.2015.06.013
Murphy, M., & Ongur, D. (2019). Decreased peak alpha frequency and impaired visual evoked potentials in first episode psychosis. NeuroImage: Clinical, 22, 101693. https://doi.org/10.1016/j.nicl.2019.101693
Newville, M., Stensitzki, T., Allen, D. B., Rawlik, M., Ingargiola, A., & Nelson, A. (2016). LMFIT: Non-linear least-square minimization and curve-fitting for python. Astrophysics Source Code Library, 1606, 1014.
Niedermeyer, E. (2005). The normal EEG of the waking adult. Electroencephalography: Basic Principles, Clinical Applications, and Related Fields, 167, 155-164.
Nunez, M., Nunez, P., & Srinivasan, R. (2016). Electroencephalography (EEG): Neurophysics, experimental methods, and signal processing. In H. Ombao, M. Lindquist, W. Thompson, & J. Aston (Eds.), Handbook of neuroimaging data analysis (pp. 175-197). Chapman & Hall. https://doi.org/10.13140/RG.2.2.12706.63687
Osipova, D., Hermes, D., & Jensen, O. (2008). Gamma power is phase-locked to posterior alpha activity. PLoS One, 3(12), e3990.
Preacher, K. J., Curran, P. J., & Bauer, D. J. (2006). Computational tools for probing interactions in multiple linear regression, multilevel modeling, and latent curve analysis. Journal of Educational and Behavioral Statistics, 31(4), 437-448.
Rempe, M. P., Ott, L. R., Picci, G., Penhale, S. H., Christopher-Hayes, N. J., Lew, B. J., Petro, N. M., Embury, C. M., Schantell, M., Johnson, H. J., Okelberry, H. J., Losh, K. L., Willett, M. P., Losh, R. A., Wang, Y. P., Calhoun, V. D., Stephen, J. M., Heinrichs-Graham, E., Kurz, M. J., & Wilson, T. W. (2023). Spontaneous cortical dynamics from the first years to the golden years. Proceedings of the National Academy of Sciences of the United States of America, 120(4), e2212776120. https://doi.org/10.1073/pnas.2212776120
Rutter, M., Le Couteur, A., & Lord, C. (2003). Autism diagnostic interview-revised (Vol. 29, p. 30). Western Psychological Services.
Schmid, M. C., Singer, W., & Fries, P. (2012). Thalamic coordination of cortical communication. Neuron, 75(4), 551-552.
Schmid, R. G., Tirsch, W. S., & Reitmeir, P. (1997). Correlation of developmental neurological findings with spectral analytical EEG evaluations in pre-school age children. Electroencephalography and Clinical Neurophysiology, 103(5), 516-527. https://doi.org/10.1016/s0013-4694(97)00054-0
Schmid, R. G., Tirsch, W. S., & Scherb, H. (2002). Correlation between spectral EEG parameters and intelligence test variables in school-age children. Clinical Neurophysiology, 113(10), 1647-1656. https://doi.org/10.1016/s1388-2457(02)00212-2
Shen, G., Green, H. L., Franzen, R. E., Berman, J. I., Dipiero, M., Mowad, T. G., Bloy, L., Liu, S., Airey, M., Goldin, S., Ku, M., McBride, E., Blaskey, L., Kuschner, E. S., Kim, M., Konka, K., Roberts, T. P. L., & Edgar, J. C. (2023). Resting-state activity in children: Replicating and extending findings of early maturation of alpha rhythms in autism spectrum disorder. Journal of Autism and Developmental Disorders. https://doi.org/10.1007/s10803-023-05926-7
Shephard, E., Tye, C., Ashwood, K. L., Azadi, B., Asherson, P., Bolton, P. F., & McLoughlin, G. (2018). Resting-state neurophysiological activity patterns in young people with ASD, ADHD, and ASD + ADHD. Journal of Autism and Developmental Disorders, 48(1), 110-122. https://doi.org/10.1007/s10803-017-3300-4
Swingler, M. M., Willoughby, M. T., & Calkins, S. D. (2011). EEG power and coherence during preschoolers' performance of an executive function battery. Developmental Psychobiology, 53(8), 771-784.
Valdes-Hernandez, P. A., Ojeda-Gonzalez, A., Martinez-Montes, E., Lage-Castellanos, A., Virues-Alba, T., Valdes-Urrutia, L., & Valdes-Sosa, P. A. (2010). White matter architecture rather than cortical surface area correlates with the EEG alpha rhythm. NeuroImage, 49(3), 2328-2339. https://doi.org/10.1016/j.neuroimage.2009.10.030
van Noordt, S., & Willoughby, T. (2021). Cortical maturation from childhood to adolescence is reflected in resting state EEG signal complexity. Developmental Cognitive Neuroscience, 48, 100945. https://doi.org/10.1016/j.dcn.2021.100945
Wang, J., Barstein, J., Ethridge, L. E., Mosconi, M. W., Takarae, Y., & Sweeney, J. A. (2013). Resting state EEG abnormalities in autism spectrum disorders. Journal of Neurodevelopmental Disorders, 5(1), 24. https://doi.org/10.1186/1866-1955-5-24
Whitford, T. J., Rennie, C. J., Grieve, S. M., Clark, C. R., Gordon, E., & Williams, L. M. (2007). Brain maturation in adolescence: Concurrent changes in neuroanatomy and neurophysiology. Human Brain Mapping, 28(3), 228-237. https://doi.org/10.1002/hbm.20273
Widmann, A., Schroger, E., & Maess, B. (2015). Digital filter design for electrophysiological data-A practical approach. Journal of Neuroscience Methods, 250, 34-46. https://doi.org/10.1016/j.jneumeth.2014.08.002
Wood, S. N. (2011). Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. Journal of the Royal Statistical Society, Series B: Statistical Methodology, 73(1), 3-36.

Auteurs

Caroline E Finn (CE)

Child Study Center, Yale School of Medicine, New Haven, Connecticut, USA.

Gloria T Han (GT)

Child Study Center, Yale School of Medicine, New Haven, Connecticut, USA.
Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.

Adam J Naples (AJ)

Child Study Center, Yale School of Medicine, New Haven, Connecticut, USA.

Julie M Wolf (JM)

Child Study Center, Yale School of Medicine, New Haven, Connecticut, USA.

James C McPartland (JC)

Child Study Center, Yale School of Medicine, New Haven, Connecticut, USA.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH