The FP-LAPW/GAM-MPW1K approach: a reliable abinitio method for calculating the band gap of II-VI semiconductors monochalcogenides.
Band Gap
Density of States
Formation Energy
GAM-MPW1K functional
Monochalcogenides
Journal
Journal of molecular modeling
ISSN: 0948-5023
Titre abrégé: J Mol Model
Pays: Germany
ID NLM: 9806569
Informations de publication
Date de publication:
28 Aug 2023
28 Aug 2023
Historique:
received:
13
04
2023
accepted:
16
08
2023
medline:
28
8
2023
pubmed:
28
8
2023
entrez:
28
8
2023
Statut:
epublish
Résumé
The bandgap of metal monochalcogenides (MMCs) is a key property that governs their physical and chemical properties. Accurate measurement of the bandgap is essential for a range of applications, including optoelectronics and photovoltaics. However, many theoretical approximations fail to accurately calculate the bandgap for MMCs, making it difficult to obtain precise values. This study investigated the suitability of the FP-LAPW/GAM-MPW1K scheme for determining the bandgap of MMCs. The investigation included lattice parameters, bandgap, band structure, and density of states, which were compared against both previous theoretical calculations and available experimental data. The findings of the study indicate that the FP-LAPW/GAM-MPW1K approach accurately calculates the bandgap value of MMCs by efficiently treating d-state electrons. The results are consistent with prior studies, confirming the method's reliability in determining the bandgap of these semiconductors. our study used the GAM-MPW1K functional and the full potential linearized augmented plane wave method (FP-LAPW) in the ELK code to calculate the lattice parameters, electronic band structure, and bandgap of ZnS, ZnSe, ZnTe, CdS, CdSe, and CdTe compounds in the wurtzite structure. The crystallographic data were obtained from the COD database and the inputs were prepared by CIF2CELL code. The results were visualized using Xmgrace and VESTA software.
Identifiants
pubmed: 37639156
doi: 10.1007/s00894-023-05696-0
pii: 10.1007/s00894-023-05696-0
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
297Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Brédas JL (1994) Molecular geometry and nonlinear optics. Science 263:487–488. https://doi.org/10.1126/science.263.5146.487
doi: 10.1126/science.263.5146.487
pubmed: 17754879
Erbarut E (2003) Optical response functions of ZnS, ZnSe, ZnTe by the LOM method. Solid State Commun 127:515–519. https://doi.org/10.1016/S0038-1098(03)00349-1
doi: 10.1016/S0038-1098(03)00349-1
Yu Y, Zhou J, Han H et al (2009) Ab initio study of structural, dielectric, and dynamical properties of zinc-blende ZnX (X=O, S, Se, Te). J Alloy Compd 471:492–497. https://doi.org/10.1016/j.jallcom.2008.04.039
doi: 10.1016/j.jallcom.2008.04.039
Wei S, Lu J, Qian Y (2008) Density functional study of 2D semiconductor CdSe· hda
doi: 10.1021/cm703406c
and, and, (2014) First principle studies of structural, elastic, electronic and optical properties of Zn-chalcogenides under pressure. J Semicond 35:072001. https://doi.org/10.1088/1674-4926/35/7/072001
doi: 10.1088/1674-4926/35/7/072001
Sörgel J, Scherz U (1998) Ab initio calculation of elastic constants and electronic properties of ZnSe and ZnTe under uniaxial strain. Eur Phys J B 5:45–52. https://doi.org/10.1007/s100510050417
doi: 10.1007/s100510050417
Huynh WU, Dittmer JJ, Alivisatos AP (2002) Hybrid nanorod-polymer solar cells. Science 295:2425–2427. https://doi.org/10.1126/science.1069156
doi: 10.1126/science.1069156
pubmed: 11923531
Safari M, Izadi Z, Jalilian J et al (2017) Metal mono-chalcogenides ZnX and CdX (X=S, Se and Te) monolayers: chemical bond and optical interband transitions by first principles calculations. Phys Lett A 381:663–670. https://doi.org/10.1016/j.physleta.2016.11.040
doi: 10.1016/j.physleta.2016.11.040
Aras M, Kılıç Ç (2014) Combined hybrid functional and DFT+ U calculations for metal chalcogenides. J Chem Phys 141:044106. https://doi.org/10.1063/1.4890458
doi: 10.1063/1.4890458
pubmed: 25084880
Wan Z, Wang Q-D, Liu D, Liang J (2021) Effectively improving the accuracy of PBE functional in calculating the solid band gap via machine learning. Comput Mater Sci 198:110699. https://doi.org/10.1016/j.commatsci.2021.110699
doi: 10.1016/j.commatsci.2021.110699
Nourbakhsh Z (2010) Structural, electronic and optical properties of ZnX and CdX compounds (X=Se, Te and S) under hydrostatic pressure. J Alloy Compd 505:698–711. https://doi.org/10.1016/j.jallcom.2010.06.120
doi: 10.1016/j.jallcom.2010.06.120
Saha S, Pal S, Sarkar P et al (2012) A complete set of self-consistent charge density-functional tight-binding parametrization of zinc chalcogenides (ZnX; X=O, S, Se, and Te). J Comput Chem 33:1165–1178. https://doi.org/10.1002/jcc.22945
doi: 10.1002/jcc.22945
pubmed: 22392924
Khenata R, Bouhemadou A, Sahnoun M et al (2006) Elastic, electronic and optical properties of ZnS, ZnSe and ZnTe under pressure. Comput Mater Sci 38:29–38. https://doi.org/10.1016/j.commatsci.2006.01.013
doi: 10.1016/j.commatsci.2006.01.013
Khan I, Ahmad I, Aliabad HAR, Maqbool M (2015) DFT-mBJ studies of the band structures of the II-VI semiconductors. Mater Today: Proc 2:5122–5127. https://doi.org/10.1016/j.matpr.2015.11.008
doi: 10.1016/j.matpr.2015.11.008
Singh DJ (1994) Planewaves, Pseudopotentials and the LAPW Method. Springer US, Boston
doi: 10.1007/978-1-4757-2312-0
Yu HS, Zhang W, Verma P et al (2015) Nonseparable exchange–correlation functional for molecules, including homogeneous catalysis involving transition metals. Phys Chem Chem Phys 17:12146–12160. https://doi.org/10.1039/C5CP01425E
doi: 10.1039/C5CP01425E
pubmed: 25877230
Lynch BJ, Fast PL, Harris M, Truhlar DG (2000) Adiabatic Connection for Kinetics. J Phys Chem A 104:4811–4815. https://doi.org/10.1021/jp000497z
doi: 10.1021/jp000497z
Source Forge (2023) The Elk Code. https://sourceforge.net/projects/elk/files/
Lehtola S, Steigemann C, Oliveira MJT, Marques MAL (2018) Recent developments in libxc — A comprehensive library of functionals for density functional theory. SoftwareX 7:1–5. https://doi.org/10.1016/j.softx.2017.11.002
doi: 10.1016/j.softx.2017.11.002
Merkys A, Vaitkus A, Grybauskas A et al (2023) Graph isomorphism-based algorithm for cross-checking chemical and crystallographic descriptions. J Cheminform 15:25. https://doi.org/10.1186/s13321-023-00692-1
doi: 10.1186/s13321-023-00692-1
pubmed: 36814296
pmcid: 9948373
Vaitkus A, Merkys A, Gražulis S (2021) Validation of the crystallography open database using the crystallographic information framework. J Appl Crystallogr 54:661–672. https://doi.org/10.1107/S1600576720016532
doi: 10.1107/S1600576720016532
pubmed: 33953659
pmcid: 8056762
Quirós M, Gražulis S, Girdzijauskaitė S et al (2018) Using SMILES strings for the description of chemical connectivity in the Crystallography Open Database. J Cheminform 10:23. https://doi.org/10.1186/s13321-018-0279-6
doi: 10.1186/s13321-018-0279-6
pubmed: 29777317
pmcid: 5959826
Merkys A, Vaitkus A, Butkus J et al (2016) COD::CIF::Parser : an error-correcting CIF parser for the Perl language. J Appl Crystallogr 49:292–301. https://doi.org/10.1107/S1600576715022396
doi: 10.1107/S1600576715022396
pubmed: 26937241
pmcid: 4762566
Gražulis S, Merkys A, Vaitkus A, Okulič-Kazarinas M (2015) Computing stoichiometric molecular composition from crystal structures. J Appl Crystallogr 48:85–91. https://doi.org/10.1107/S1600576714025904
doi: 10.1107/S1600576714025904
pubmed: 26089747
pmcid: 4453171
Gražulis S, Daškevič A, Merkys A et al (2012) Crystallography Open Database (COD): an open-access collection of crystal structures and platform for world-wide collaboration. Nucleic Acids Res 40:D420–D427. https://doi.org/10.1093/nar/gkr900
doi: 10.1093/nar/gkr900
pubmed: 22070882
Gražulis S, Chateigner D, Downs RT et al (2009) Crystallography Open Database – an open-access collection of crystal structures. J Appl Crystallogr 42:726–729. https://doi.org/10.1107/S0021889809016690
doi: 10.1107/S0021889809016690
pubmed: 22477773
pmcid: 3253730
Downs RT, Hall-Wallace M (2003) The American Mineralogist crystal structure database. Am Miner 88:247–250
Björkman T (2011) CIF2Cell: Generating geometries for electronic structure programs. Comput Phys Commun 182:1183–1186. https://doi.org/10.1016/j.cpc.2011.01.013
doi: 10.1016/j.cpc.2011.01.013
Turner PJ (2005) XMGRACE, Version 5.1. 19. Center for Coastal and Land-Margin Research, Oregon Graduate Institute of Science and Technology, Beaverton, OR 2. https://plasma-gate.weizmann.ac.il/pub/grace/
Momma K, Izumi F (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Cryst 44:1272–1276. https://doi.org/10.1107/S0021889811038970
doi: 10.1107/S0021889811038970
Bimberg D (1982) Numerical data and functional relationships in science and technology. Teilbd. a: Gruppe 3: Kristall- und Festkörperphysik = Group 3: @Crystal and solid state physics Bd. 17. Halbleiter Physik der Elemente der IV. Gruppe und der III - V Verbindungen / D. Bimberg. Springer, Berlin Heidelberg
Yadav SK, Sadowski T, Ramprasad R (2010) Density functional theory study of Zn X ( X = O, S, Se, Te ) under uniaxial strain. Phys Rev B 81:144120. https://doi.org/10.1103/PhysRevB.81.144120
doi: 10.1103/PhysRevB.81.144120
Yu PY, Cardona M (2010) Fundamentals of Semiconductors: Physics and Materials Properties, 4th ed. 2010 edition. Springer, Berlin; New York
Hashir P, Pradyumnan PP, Wani AF, Kaur K (2022) Experimental and first-principles thermoelectric studies of bulk ZnO. IOP Conf Ser: Mater Sci Eng 1263:012025. https://doi.org/10.1088/1757-899X/1263/1/012025
doi: 10.1088/1757-899X/1263/1/012025
Adachi S, Taguchi T (1991) Optical properties of ZnSe. Phys Rev B 43:9569–9577. https://doi.org/10.1103/PhysRevB.43.9569
doi: 10.1103/PhysRevB.43.9569
Christensen NE, Christensen OB (1986) Electronic structure of ZnTe and CdTe under pressure. Phys Rev B 33:4739–4746. https://doi.org/10.1103/PhysRevB.33.4739
doi: 10.1103/PhysRevB.33.4739
Ghahramani E, Moss DJ, Sipe JE (1991) Full-band-structure calculation of first-, second-, and third-harmonic optical response coefficients of ZnSe, ZnTe, and CdTe. Phys Rev B 43:9700–9710. https://doi.org/10.1103/PhysRevB.43.9700
doi: 10.1103/PhysRevB.43.9700
Sharma S, Verma AS, Sarkar BK et al (2011) First principles study on the elastic and electronic properties of CdX (X = S, Se and Te). pp 229–230. https://doi.org/10.1063/1.3653693
Lee G-D, Lee MH, Ihm J (1995) Role of d electrons in the zinc-blende semiconductors ZnS, ZnSe, and ZnTe. Phys Rev B 52:1459–1462. https://doi.org/10.1103/PhysRevB.52.1459
doi: 10.1103/PhysRevB.52.1459
Li ZQ, Pötz W (1992) Electronic density of states of semiconductor alloys from lattice-mismatched isovalent binary constituents. Phys Rev B 46:2109–2118. https://doi.org/10.1103/PhysRevB.46.2109
doi: 10.1103/PhysRevB.46.2109
Yuriychuk I, Fochuk P, Bolotnikov A, James RB (2019) Ab initio GGA+U investigations of the structural, electronic, and magnetic properties of Cd1-xMnxTe alloy. In: Burger A, James RB, Payne SA (eds) Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XXI. SPIE, San Diego, p 65
doi: 10.1117/12.2529263
Wu Y, Chen G, Zhu Y et al (2015) LDA+U/GGA+U calculations of structural and electronic properties of CdTe: dependence on the effective U parameter. Comput Mater Sci 98:18–23. https://doi.org/10.1016/j.commatsci.2014.10.051
doi: 10.1016/j.commatsci.2014.10.051
Hussain MI, Khalil RMA, Hussain F (2021) Computational exploration of structural, electronic, and optical properties of novel combinations of inorganic Ruddlesden-popper layered perovskites Bi
doi: 10.1002/ente.202001026
Hussain MI, Khalil RMA, Hussain F, Rana AM (2021) DFT -based insight into the magnetic and thermoelectric characteristics of XTAO
doi: 10.1002/er.5968
Hussain MI, Khalil RMA, Hussain F et al (2020) Investigations of structural, electronic and optical properties of TM-GaO
doi: 10.1088/2053-1591/ab619c