Zinc Oxide Nanoparticles and Cancer Chemotherapy: Helpful Tools for Enhancing Chemo-sensitivity and Reducing Side Effects?
Cancer
Chemo-resistance
Side effects of chemotherapy
Zinc
Zinc oxide nanoparticles
Journal
Biological trace element research
ISSN: 1559-0720
Titre abrégé: Biol Trace Elem Res
Pays: United States
ID NLM: 7911509
Informations de publication
Date de publication:
May 2024
May 2024
Historique:
received:
26
06
2023
accepted:
05
08
2023
pubmed:
28
8
2023
medline:
28
8
2023
entrez:
28
8
2023
Statut:
ppublish
Résumé
Cancer chemotherapy is still a serious challenge. Chemo-resistance and destructive side effects of chemotherapy drugs are the most critical limitations of chemotherapy. Chemo-resistance is the leading cause of chemotherapy failure. Chemo-resistance, which refers to the resistance of cancer cells to the anticancer effects of chemotherapy drugs, is caused by various reasons. Among the most important of these reasons is the increase in the efflux of chemotherapy drugs due to the rise in the expression and activity of ABC transporters, the weakening of apoptosis, and the strengthening of stemness. In the last decade, a significant number of studies focused on the application of nanotechnology in cancer treatment. Considering the anti-cancer properties of zinc, zinc oxide nanoparticles have received much attention in recent years. Some studies have indicated that zinc oxide nanoparticles can target the critical mechanisms of cancer chemo-resistance and enhance the effectiveness of chemotherapy drugs. These studies have shown that zinc oxide nanoparticles can reduce the activity of ABC transporters, increase DNA damage and apoptosis, and attenuate stemness in cancer cells, leading to enhanced chemo-sensitivity. Some other studies have also shown that zinc oxide nanoparticles in low doses can be helpful in minimizing the harmful side effects of chemotherapy drugs. In this article, after a brief overview of the mechanisms of chemo-resistance and anticancer effects of zinc, we will review all these studies in detail.
Identifiants
pubmed: 37639166
doi: 10.1007/s12011-023-03803-z
pii: 10.1007/s12011-023-03803-z
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
1878-1900Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Ahmad FB, Cisewski JA, Xu J, Anderson RN (2023) Provisional mortality data - United States, 2022. MMWR Morb Mortal Wkly Rep 72:488–92. https://doi.org/10.15585/mmwr.mm7218a3
doi: 10.15585/mmwr.mm7218a3
pubmed: 37141156
pmcid: 10168603
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424. https://doi.org/10.3322/caac.21492
doi: 10.3322/caac.21492
pubmed: 30207593
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71:209–249. https://doi.org/10.3322/caac.21660
doi: 10.3322/caac.21660
pubmed: 33538338
Anjum S, Hashim M, Malik SA, Khan M, Lorenzo JM, Abbasi BH et al (2021) Recent advances in zinc oxide nanoparticles (ZnO NPs) for cancer diagnosis, target drug delivery, and treatment. Cancers (Basel) 13. https://doi.org/10.3390/cancers13184570
Emran TB, Shahriar A, Mahmud AR, Rahman T, Abir MH, Siddiquee MF et al (2022) Multidrug resistance in cancer: understanding molecular mechanisms, immunoprevention and therapeutic approaches. Front Oncol 12:891652. https://doi.org/10.3389/fonc.2022.891652
doi: 10.3389/fonc.2022.891652
pubmed: 35814435
pmcid: 9262248
Bukowski K, Kciuk M, Kontek R (2020) Mechanisms of multidrug resistance in cancer chemotherapy. Int J Mol Sci 21. https://doi.org/10.3390/ijms21093233
Vaghari-Tabari M, Hassanpour P, Sadeghsoltani F, Malakoti F, Alemi F, Qujeq D et al (2022) CRISPR/Cas9 gene editing: a new approach for overcoming drug resistance in cancer. Cell Mol Biol Lett 27:49. https://doi.org/10.1186/s11658-022-00348-2
doi: 10.1186/s11658-022-00348-2
pubmed: 35715750
pmcid: 9204876
Simos YV, Spyrou K, Patila M, Karouta N, Stamatis H, Gournis D et al (2021) Trends of nanotechnology in type 2 diabetes mellitus treatment. Asian J Pharm Sci 16:62–76. https://doi.org/10.1016/j.ajps.2020.05.001
doi: 10.1016/j.ajps.2020.05.001
pubmed: 33613730
Tavakoli A, Hashemzadeh MS (2020) Inhibition of herpes simplex virus type 1 by copper oxide nanoparticles. J Virol Methods 275:113688. https://doi.org/10.1016/j.jviromet.2019.113688
doi: 10.1016/j.jviromet.2019.113688
pubmed: 31271792
Hashemzadeh MS, Gharari N (2023) Biosynthesis of a VLP-type nanocarrier specific to cancer cells using the BEVS expression system for targeted drug delivery. J Genet Eng Biotechnol 21:20. https://doi.org/10.1186/s43141-023-00479-9
doi: 10.1186/s43141-023-00479-9
pubmed: 36795253
pmcid: 9932404
Mosleh-Shirazi S, Abbasi M, Moaddeli MR, Vaez A, Shafiee M, Kasaee SR et al (2022) Nanotechnology advances in the detection and treatment of cancer: an overview. nanotheranostics 6:400–23. https://doi.org/10.7150/ntno.74613
doi: 10.7150/ntno.74613
pubmed: 36051855
pmcid: 9428923
Jafari-Gharabaghlou D, Dadashpour M, Khanghah OJ, Salmani-Javan E, Zarghami N (2023) Potentiation of folate-functionalized PLGA-PEG nanoparticles loaded with metformin for the treatment of breast cancer: possible clinical application. Mol Biol Rep 50:3023–3033. https://doi.org/10.1007/s11033-022-08171-w
doi: 10.1007/s11033-022-08171-w
pubmed: 36662452
Alagheband Y, Jafari-gharabaghlou D, Imani M, Mousazadeh H, Dadashpour M, Firouzi-Amandi A et al (2022) Design and fabrication of a dual-drug loaded nano-platform for synergistic anticancer and cytotoxicity effects on the expression of leptin in lung cancer treatment. J Drug Deliv Sci Technol 73:103389. https://doi.org/10.1016/j.jddst.2022.103389
doi: 10.1016/j.jddst.2022.103389
Kovrigina E, Poletaeva Y, Zheng Y, Chubarov A, Dmitrienko E (2023) Nylon-6-coated doxorubicin-loaded magnetic nanoparticles and nanocapsules for cancer treatment. Magnetochemistry 9:106
doi: 10.3390/magnetochemistry9040106
Mohamadi A, Pagès G, Hashemzadeh MS (2020) The important role of oncolytic viruses in common cancer treatments. Curr Cancer Ther Rev 16:292–305. https://doi.org/10.2174/1573394716666200211120906
doi: 10.2174/1573394716666200211120906
Liu J, Fu M, Wang M, Wan D, Wei Y, Wei X (2022) Cancer vaccines as promising immuno-therapeutics: platforms and current progress. J Hematol Oncol 15:28. https://doi.org/10.1186/s13045-022-01247-x
doi: 10.1186/s13045-022-01247-x
pubmed: 35303904
pmcid: 8931585
Chen XZ, Guo R, Zhao C, Xu J, Song H, Yu H et al (2022) A novel anti-cancer therapy: CRISPR/Cas9 gene editing. Front Pharmacol 13:939090. https://doi.org/10.3389/fphar.2022.939090
doi: 10.3389/fphar.2022.939090
pubmed: 35935840
pmcid: 9353945
Hashemzadeh SM, Tapeh EGB, Mirhosseini AS (2021) The role of bacterial superantigens in the immune response: from biology to cancer treatment. Curr Cancer Ther Rev 17:21–34. https://doi.org/10.2174/1573394716666200812150402
doi: 10.2174/1573394716666200812150402
Vaghari-Tabari M, Majidinia M, Moein S, Qujeq D, Asemi Z, Alemi F et al (2020) MicroRNAs and colorectal cancer chemoresistance: new solution for old problem. Life Sci 259:118255. https://doi.org/10.1016/j.lfs.2020.118255
doi: 10.1016/j.lfs.2020.118255
pubmed: 32818543
Zhang N, Yin Y, Xu SJ, Chen WS (2008) 5-Fluorouracil: mechanisms of resistance and reversal strategies. Molecules 13:1551–1569. https://doi.org/10.3390/molecules13081551
doi: 10.3390/molecules13081551
pubmed: 18794772
pmcid: 6244944
Aldossary SA (2019) Review on pharmacology of cisplatin: clinical use, toxicity and mechanism of resistance of cisplatin. Biomed Pharmacol J 12:7–15. https://doi.org/10.13005/bpj/1608
doi: 10.13005/bpj/1608
Thorn CF, Oshiro C, Marsh S, Hernandez-Boussard T, McLeod H, Klein TE et al (2011) Doxorubicin pathways: pharmacodynamics and adverse effects. Pharmacogenet Genomics 21:440–446. https://doi.org/10.1097/FPC.0b013e32833ffb56
doi: 10.1097/FPC.0b013e32833ffb56
pubmed: 21048526
pmcid: 3116111
Mirzaei S, Hushmandi K, Zabolian A, Saleki H, Torabi SMR, Ranjbar A et al (2021) Elucidating role of reactive oxygen species (ROS) in cisplatin chemotherapy: a focus on molecular pathways and possible therapeutic strategies. Molecules 26. https://doi.org/10.3390/molecules26082382
Blondy S, David V, Verdier M, Mathonnet M, Perraud A, Christou N (2020) 5-Fluorouracil resistance mechanisms in colorectal cancer: from classical pathways to promising processes. Cancer Sci 111:3142–3154. https://doi.org/10.1111/cas.14532
doi: 10.1111/cas.14532
pubmed: 32536012
pmcid: 7469786
Soghli N, Ferns GA, Sadeghsoltani F, Qujeq D, Yousefi T, Vaghari-Tabari M (2022) MicroRNAs and osteosarcoma: potential targets for inhibiting metastasis and increasing chemosensitivity. Biochem Pharmacol 201:115094. https://doi.org/10.1016/j.bcp.2022.115094
doi: 10.1016/j.bcp.2022.115094
pubmed: 35588853
Kaur G, Gupta SK, Singh P, Ali V, Kumar V, Verma M (2020) Drug-metabolizing enzymes: role in drug resistance in cancer. Clin Transl Oncol 22:1667–1680. https://doi.org/10.1007/s12094-020-02325-7
doi: 10.1007/s12094-020-02325-7
pubmed: 32170639
Hsu HH, Chen MC, Baskaran R, Lin YM, Day CH, Lin YJ et al (2018) Oxaliplatin resistance in colorectal cancer cells is mediated via activation of ABCG2 to alleviate ER stress induced apoptosis. J Cell Physiol 233:5458–5467. https://doi.org/10.1002/jcp.26406
doi: 10.1002/jcp.26406
pubmed: 29247488
Liu L, Zuo LF, Guo JW (2014) ABCG2 gene amplification and expression in esophageal cancer cells with acquired adriamycin resistance. Mol Med Rep 9:1299–1304. https://doi.org/10.3892/mmr.2014.1949
doi: 10.3892/mmr.2014.1949
pubmed: 24535197
Garrido-Cano I, Adam-Artigues A, Lameirinhas A, Blandez JF, Candela-Noguera V, Rojo F et al (2022) miR-99a-5p modulates doxorubicin resistance via the COX-2/ABCG2 axis in triple-negative breast cancer: from the discovery to in vivo studies. Cancer Commun (Lond) 42:1412–1416. https://doi.org/10.1002/cac2.12352
doi: 10.1002/cac2.12352
pubmed: 35997029
Zhang R, Li SW, Liu L, Yang J, Huang G, Sang Y (2020) TRIM11 facilitates chemoresistance in nasopharyngeal carcinoma by activating the β-catenin/ABCC9 axis via p62-selective autophagic degradation of Daple. Oncogenesis 9:45. https://doi.org/10.1038/s41389-020-0229-9
doi: 10.1038/s41389-020-0229-9
pubmed: 32382014
pmcid: 7206012
Bao L, Hazari S, Mehra S, Kaushal D, Moroz K, Dash S (2012) Increased expression of P-glycoprotein and doxorubicin chemoresistance of metastatic breast cancer is regulated by miR-298. Am J Pathol 180:2490–2503. https://doi.org/10.1016/j.ajpath.2012.02.024
doi: 10.1016/j.ajpath.2012.02.024
pubmed: 22521303
pmcid: 3378910
Yin Y, Xin Y, Zhang F, An D, Fan H, Qin M et al (2023) Overcoming ABCB1-mediated multidrug resistance by transcription factor BHLHE40. Neoplasia 39:100891. https://doi.org/10.1016/j.neo.2023.100891
doi: 10.1016/j.neo.2023.100891
pubmed: 36931039
pmcid: 10025992
Li S, Li C, Jin S, Liu J, Xue X, Eltahan AS et al (2017) Overcoming resistance to cisplatin by inhibition of glutathione S-transferases (GSTs) with ethacraplatin micelles in vitro and in vivo. Biomaterials 144:119–129. https://doi.org/10.1016/j.biomaterials.2017.08.021
doi: 10.1016/j.biomaterials.2017.08.021
pubmed: 28834763
Jia Y, Zhang C, Zhou L, Xu H, Shi Y, Tong Z (2015) Micheliolide overcomes KLF4-mediated cisplatin resistance in breast cancer cells by downregulating glutathione. Onco Targets Ther 8:2319–2327. https://doi.org/10.2147/ott.s88661
doi: 10.2147/ott.s88661
pubmed: 26356142
pmcid: 4559251
Kalinina EV, Chernov NN, Saprin AN, Kotova YN, Andreev YA, Solomka VS et al (2006) Changes in expression of genes encoding antioxidant enzymes, heme oxygenase-1, Bcl-2, and Bcl-xl and in level of reactive oxygen species in tumor cells resistant to doxorubicin. Biochemistry (Mosc) 71:1200–1206. https://doi.org/10.1134/s0006297906110058
doi: 10.1134/s0006297906110058
pubmed: 17140381
Yang J, Parsons J, Nicolay NH, Caporali S, Harrington CF, Singh R et al (2010) Cells deficient in the base excision repair protein, DNA polymerase beta, are hypersensitive to oxaliplatin chemotherapy. Oncogene 29:463–468. https://doi.org/10.1038/onc.2009.327
doi: 10.1038/onc.2009.327
pubmed: 19838217
Benhattar J, Cerottini JP, Saraga E, Metthez G, Givel JC (1996) p53 mutations as a possible predictor of response to chemotherapy in metastatic colorectal carcinomas. Int J Cancer 69:190–192. https://doi.org/10.1002/(sici)1097-0215(19960621)69:3%3c190::aid-ijc7%3e3.0.co;2-v
doi: 10.1002/(sici)1097-0215(19960621)69:3<190::aid-ijc7>3.0.co;2-v
pubmed: 8682586
Boyer J, McLean EG, Aroori S, Wilson P, McCulla A, Carey PD et al (2004) Characterization of p53 wild-type and null isogenic colorectal cancer cell lines resistant to 5-fluorouracil, oxaliplatin, and irinotecan. Clin Cancer Res 10:2158–2167. https://doi.org/10.1158/1078-0432.ccr-03-0362
doi: 10.1158/1078-0432.ccr-03-0362
pubmed: 15041737
Manoochehri M, Karbasi A, Bandehpour M, Kazemi B (2014) Down-regulation of BAX gene during carcinogenesis and acquisition of resistance to 5-FU in colorectal cancer. Pathol Oncol Res 20:301–307. https://doi.org/10.1007/s12253-013-9695-0
doi: 10.1007/s12253-013-9695-0
pubmed: 24122668
Cho HJ, Kim JK, Kim KD, Yoon HK, Cho MY, Park YP et al (2006) Upregulation of Bcl-2 is associated with cisplatin-resistance via inhibition of Bax translocation in human bladder cancer cells. Cancer Lett 237:56–66. https://doi.org/10.1016/j.canlet.2005.05.039
doi: 10.1016/j.canlet.2005.05.039
pubmed: 16009487
Zhao Y, Zhang CL, Zeng BF, Wu XS, Gao TT, Oda Y (2009) Enhanced chemosensitivity of drug-resistant osteosarcoma cells by lentivirus-mediated Bcl-2 silencing. Biochem Biophys Res Commun 390:642–647. https://doi.org/10.1016/j.bbrc.2009.10.020
doi: 10.1016/j.bbrc.2009.10.020
pubmed: 19818735
Zhang Y, Bao C, Mu Q, Chen J, Wang J, Mi Y et al (2016) Reversal of cisplatin resistance by inhibiting PI3K/Akt signal pathway in human lung cancer cells. Neoplasma 63:362–370. https://doi.org/10.4149/304_150806n433
doi: 10.4149/304_150806n433
pubmed: 26925782
Zhang J, Liu J, Li H, Wang J (2016) β-Catenin signaling pathway regulates cisplatin resistance in lung adenocarcinoma cells by upregulating Bcl-xl. Mol Med Rep 13:2543–2551. https://doi.org/10.3892/mmr.2016.4882
doi: 10.3892/mmr.2016.4882
pubmed: 26860078
pmcid: 4768989
Long L, Xiang H, Liu J, Zhang Z, Sun L (2019) ZEB1 mediates doxorubicin (Dox) resistance and mesenchymal characteristics of hepatocarcinoma cells. Exp Mol Pathol 106:116–122. https://doi.org/10.1016/j.yexmp.2019.01.001
doi: 10.1016/j.yexmp.2019.01.001
pubmed: 30615851
Orellana-Serradell O, Herrera D, Castellón EA, Contreras HR (2019) The transcription factor ZEB1 promotes chemoresistance in prostate cancer cell lines. Asian J Androl 21:460–467. https://doi.org/10.4103/aja.aja_1_19
doi: 10.4103/aja.aja_1_19
pubmed: 30880686
pmcid: 6732893
Chen B, Zhu Z, Li L, Ye W, Zeng J, Gao J et al (2019) Effect of overexpression of Oct4 and Sox2 genes on the biological and oncological characteristics of gastric cancer cells. Onco Targets Ther 12:4667–4682. https://doi.org/10.2147/ott.s209734
doi: 10.2147/ott.s209734
pubmed: 31417271
pmcid: 6592062
Yan Y, Liu F, Han L, Zhao L, Chen J, Olopade OI et al (2018) HIF-2α promotes conversion to a stem cell phenotype and induces chemoresistance in breast cancer cells by activating Wnt and Notch pathways. J Exp Clin Cancer Res 37:256. https://doi.org/10.1186/s13046-018-0925-x
doi: 10.1186/s13046-018-0925-x
pubmed: 30340507
pmcid: 6194720
Deng J, Bai X, Feng X, Ni J, Beretov J, Graham P et al (2019) Inhibition of PI3K/Akt/mTOR signaling pathway alleviates ovarian cancer chemoresistance through reversing epithelial-mesenchymal transition and decreasing cancer stem cell marker expression. BMC Cancer 19:618. https://doi.org/10.1186/s12885-019-5824-9
doi: 10.1186/s12885-019-5824-9
pubmed: 31234823
pmcid: 6591840
Pote MS, Gacche RN (2023) ATP-binding cassette efflux transporters and MDR in cancer. Drug Discov Today 28:103537. https://doi.org/10.1016/j.drudis.2023.103537
doi: 10.1016/j.drudis.2023.103537
pubmed: 36801375
He M, Wu H, Jiang Q, Liu Y, Han L, Yan Y et al (2019) Hypoxia-inducible factor-2α directly promotes BCRP expression and mediates the resistance of ovarian cancer stem cells to adriamycin. Mol Oncol 13:403–421. https://doi.org/10.1002/1878-0261.12419
doi: 10.1002/1878-0261.12419
pubmed: 30536571
pmcid: 6360369
Dong C, Wu J, Chen Y, Nie J, Chen C (2021) Activation of PI3K/AKT/mTOR pathway causes drug resistance in breast cancer. Front Pharmacol 12:628690. https://doi.org/10.3389/fphar.2021.628690
doi: 10.3389/fphar.2021.628690
pubmed: 33790792
pmcid: 8005514
Buck E, Sprick M, Gaida MM, Grüllich C, Weber TF, Herpel E et al (2019) Tumor response to irinotecan is associated with CYP3A5 expression in colorectal cancer. Oncol Lett 17:3890–3898. https://doi.org/10.3892/ol.2019.10043
doi: 10.3892/ol.2019.10043
pubmed: 30881507
pmcid: 6403523
Li Y, Chen S, Zhu J, Zheng C, Wu M, Xue L et al (2022) Lovastatin enhances chemosensitivity of paclitaxel-resistant prostate cancer cells through inhibition of CYP2C8. Biochem Biophys Res Commun 589:85–91. https://doi.org/10.1016/j.bbrc.2021.12.007
doi: 10.1016/j.bbrc.2021.12.007
pubmed: 34896780
Norouzi-Barough L, Sarookhani MR, Sharifi M, Moghbelinejad S, Jangjoo S, Salehi R (2018) Molecular mechanisms of drug resistance in ovarian cancer. J Cell Physiol 233:4546–4562. https://doi.org/10.1002/jcp.26289
doi: 10.1002/jcp.26289
pubmed: 29152737
Noman ASM, Parag RR, Rashid MI, Islam S, Rahman MZ, Chowdhury AA et al (2020) Chemotherapeutic resistance of head and neck squamous cell carcinoma is mediated by EpCAM induction driven by IL-6/p62 associated Nrf2-antioxidant pathway activation. Cell Death Dis 11:663. https://doi.org/10.1038/s41419-020-02907-x
doi: 10.1038/s41419-020-02907-x
pubmed: 32814771
pmcid: 7438524
Shim GS, Manandhar S, Shin DH, Kim TH, Kwak MK (2009) Acquisition of doxorubicin resistance in ovarian carcinoma cells accompanies activation of the NRF2 pathway. Free Radic Biol Med 47:1619–1631. https://doi.org/10.1016/j.freeradbiomed.2009.09.006
doi: 10.1016/j.freeradbiomed.2009.09.006
pubmed: 19751820
Kim EJ, Kim YJ, Lee HI, Jeong SH, Nam HJ, Cho JH (2020) NRF2 Knockdown resensitizes 5-fluorouracil-resistant pancreatic cancer cells by suppressing HO-1 and ABCG2 expression. Int J Mol Sci 21. https://doi.org/10.3390/ijms21134646
Vaghari-Tabari M, Ferns GA, Qujeq D, Andevari AN, Sabahi Z, Moein S (2021) Signaling, metabolism, and cancer: an important relationship for therapeutic intervention. J Cell Physiol. https://doi.org/10.1002/jcp.30276
doi: 10.1002/jcp.30276
pubmed: 33580511
Chen J, Li Q, Jiang Y (2023) Chrysin promotes cisplatin-induced apoptosis via oxidative DNA damage in oral squamous cell carcinoma. Biochem Syst Ecol 108:104623. https://doi.org/10.1016/j.bse.2023.104623
doi: 10.1016/j.bse.2023.104623
Gurunathan S, Jeyaraj M, Kang MH, Kim JH (2019) Tangeretin-assisted platinum nanoparticles enhance the apoptotic properties of doxorubicin: combination therapy for osteosarcoma treatment. Nanomaterials (Basel) 9. https://doi.org/10.3390/nano9081089
Wang K, Hou D-Z, Ouyang Y-M, Ling P (2023) Resveratrol enhances paclitaxel-induced apoptosis through oxidative DNA damage in Caco-2 human colon cancer cells. S Afr J Bot 157:579–586. https://doi.org/10.1016/j.sajb.2023.04.023
doi: 10.1016/j.sajb.2023.04.023
Caiola E, Salles D, Frapolli R, Lupi M, Rotella G, Ronchi A et al (2015) Base excision repair-mediated resistance to cisplatin in KRAS(G12C) mutant NSCLC cells. Oncotarget 6:30072–30087. https://doi.org/10.18632/oncotarget.5019
doi: 10.18632/oncotarget.5019
pubmed: 26353932
pmcid: 4745782
Zhang Y, Xu Z, Sun Y, Chi P, Lu X (2018) Knockdown of KLK11 reverses oxaliplatin resistance by inhibiting proliferation and activating apoptosis via suppressing the PI3K/AKT signal pathway in colorectal cancer cell. Onco Targets Ther 11:809–821. https://doi.org/10.2147/ott.s151867
doi: 10.2147/ott.s151867
pubmed: 29497313
pmcid: 5820466
Lodovichi S, Cervelli T, Pellicioli A, Galli A (2020) Inhibition of DNA repair in cancer therapy: toward a multi-target approach. Int J Mol Sci 21. https://doi.org/10.3390/ijms21186684
Yang X, Zheng F, Xing H, Gao Q, Wei W, Lu Y et al (2004) Resistance to chemotherapy-induced apoptosis via decreased caspase-3 activity and overexpression of antiapoptotic proteins in ovarian cancer. J Cancer Res Clin Oncol 130:423–428. https://doi.org/10.1007/s00432-004-0556-9
doi: 10.1007/s00432-004-0556-9
pubmed: 15156398
Vaghari-Tabari M, Targhazeh N, Moein S, Qujeq D, Alemi F, Majidina M et al (2022) From inflammatory bowel disease to colorectal cancer: what’s the role of miRNAs? Cancer Cell Int 22:146. https://doi.org/10.1186/s12935-022-02557-3
doi: 10.1186/s12935-022-02557-3
pubmed: 35410210
pmcid: 8996392
Lu CS, Shieh GS, Wang CT, Su BH, Su YC, Chen YC et al (2017) Chemotherapeutics-induced Oct4 expression contributes to drug resistance and tumor recurrence in bladder cancer. Oncotarget 8:30844–58. https://doi.org/10.18632/oncotarget.9602
doi: 10.18632/oncotarget.9602
pubmed: 27244887
Xu W, Yang Z, Lu N (2015) A new role for the PI3K/Akt signaling pathway in the epithelial-mesenchymal transition. Cell Adh Migr 9:317–324. https://doi.org/10.1080/19336918.2015.1016686
doi: 10.1080/19336918.2015.1016686
pubmed: 26241004
pmcid: 4594353
De Las RJ, Brozovic A, Izraely S, Casas-Pais A, Witz IP, Figueroa A (2021) Cancer drug resistance induced by EMT: novel therapeutic strategies. Arch Toxicol 95:2279–2297. https://doi.org/10.1007/s00204-021-03063-7
doi: 10.1007/s00204-021-03063-7
Nunes T, Hamdan D, Leboeuf C, El Bouchtaoui M, Gapihan G, Nguyen TT et al (2018) Targeting cancer stem cells to overcome chemoresistance. Int J Mol Sci 19. https://doi.org/10.3390/ijms19124036
Wang SF, Huang KW, Chou YC, Lee HC, Wu PK, Chen WM et al (2023) Effect of co-medications and potential risk factors of high-dose methotrexate-mediated acute hepatotoxicity in patients with osteosarcoma. Cancer Med 12:12354–12364. https://doi.org/10.1002/cam4.5936
doi: 10.1002/cam4.5936
pubmed: 37062070
pmcid: 10278458
Zhang JC, Stotts MJ, Horton B, Schiff D (2023) Hepatotoxicity from high-dose methotrexate in primary central nervous system lymphoma. Neurooncol Pract 10:291–300. https://doi.org/10.1093/nop/npad008
doi: 10.1093/nop/npad008
pubmed: 37188158
pmcid: 10180358
Prasaja Y, Sutandyo N, Andrajati R (2015) Incidence of cisplatin-induced nephrotoxicity and associated factors among cancer patients in Indonesia. Asian Pac J Cancer Prev 16:1117–1122. https://doi.org/10.7314/apjcp.2015.16.3.1117
doi: 10.7314/apjcp.2015.16.3.1117
pubmed: 25735341
Isiiko J, Atwiine B, Oloro J (2021) Prevalence and risk factors of nephrotoxicity among adult cancer patients at mbarara regional referral hospital. Cancer Manag Res 13:7677–7684. https://doi.org/10.2147/cmar.s326052
doi: 10.2147/cmar.s326052
pubmed: 34675664
pmcid: 8504863
Santos N, Ferreira RS, Santos ACD (2020) Overview of cisplatin-induced neurotoxicity and ototoxicity, and the protective agents. Food Chem Toxicol 136:111079. https://doi.org/10.1016/j.fct.2019.111079
doi: 10.1016/j.fct.2019.111079
pubmed: 31891754
Garg MB, Lincz LF, Adler K, Scorgie FE, Ackland SP, Sakoff JA (2012) Predicting 5-fluorouracil toxicity in colorectal cancer patients from peripheral blood cell telomere length: a multivariate analysis. Br J Cancer 107:1525–1533. https://doi.org/10.1038/bjc.2012.421
doi: 10.1038/bjc.2012.421
pubmed: 22990653
pmcid: 3493765
Lévy E, Piedbois P, Buyse M, Pignon JP, Rougier P, Ryan L et al (1998) Toxicity of fluorouracil in patients with advanced colorectal cancer: effect of administration schedule and prognostic factors. J Clin Oncol 16:3537–3541. https://doi.org/10.1200/jco.1998.16.11.3537
doi: 10.1200/jco.1998.16.11.3537
pubmed: 9817272
Miyake K, Hayakawa K, Nishino M, Morimoto T, Mukaihara S (2005) Effects of oral 5-fluorouracil drugs on hepatic fat content in patients with colon cancer1. Acad Radiol 12:722–727. https://doi.org/10.1016/j.acra.2005.02.010
doi: 10.1016/j.acra.2005.02.010
pubmed: 15935970
Sieniawski M, Reineke T, Josting A, Nogova L, Behringer K, Halbsguth T et al (2008) Assessment of male fertility in patients with Hodgkin’s lymphoma treated in the German Hodgkin Study Group (GHSG) clinical trials. Ann Oncol 19:1795–1801. https://doi.org/10.1093/annonc/mdn376
doi: 10.1093/annonc/mdn376
pubmed: 18544558
Stephenson WT, Poirier SM, Rubin L, Einhorn LH (1995) Evaluation of reproductive capacity in germ cell tumor patients following treatment with cisplatin, etoposide, and bleomycin. J Clin Oncol 13:2278–2280. https://doi.org/10.1200/jco.1995.13.9.2278
doi: 10.1200/jco.1995.13.9.2278
pubmed: 7545220
Lopes F, Liu J, Morgan S, Matthews R, Nevin L, Anderson RA et al (2020) Single and combined effects of cisplatin and doxorubicin on the human and mouse ovary in vitro. Reproduction 159:193–204. https://doi.org/10.1530/rep-19-0279
doi: 10.1530/rep-19-0279
pubmed: 31821159
Vaghari-Tabari M, Jafari-Gharabaghlou D, Sadeghsoltani F, Hassanpour P, Qujeq D, Rashtchizadeh N et al (2021) Zinc and selenium in inflammatory bowel disease: trace elements with key roles? Biol Trace Elem Res 199:3190–3204. https://doi.org/10.1007/s12011-020-02444-w
doi: 10.1007/s12011-020-02444-w
pubmed: 33098076
Sadeghsoltani F, Mohammadzadeh I, Safari MM, Hassanpour P, Izadpanah M, Qujeq D et al (2022) Zinc and respiratory viral infections: important trace element in anti-viral response and immune regulation. Biol Trace Elem Res 200:2556–2571. https://doi.org/10.1007/s12011-021-02859-z
doi: 10.1007/s12011-021-02859-z
pubmed: 34368933
Lubiński J, Jaworowska E, Derkacz R, Marciniak W, Białkowska K, Baszuk P, et al (2021) Survival of laryngeal cancer patients depending on zinc serum level and oxidative stress genotypes. Biomolecules 11. https://doi.org/10.3390/biom11060865
Wang Y, Sun Z, Li A, Zhang Y (2019) Association between serum zinc levels and lung cancer: a meta-analysis of observational studies. World J Surg Oncol 17:78. https://doi.org/10.1186/s12957-019-1617-5
doi: 10.1186/s12957-019-1617-5
pubmed: 31060563
pmcid: 6503426
Choi S, Cui C, Luo Y, Kim SH, Ko JK, Huo X et al (2018) Selective inhibitory effects of zinc on cell proliferation in esophageal squamous cell carcinoma through Orai1. FASEB J 32:404–416. https://doi.org/10.1096/fj.201700227RRR
doi: 10.1096/fj.201700227RRR
pubmed: 28928244
Zhang L, Shao J, Tan SW, Ye HP, Shan XY (2022) Association between serum copper/zinc ratio and lung cancer: a systematic review with meta-analysis. J Trace Elem Med Biol 74:127061. https://doi.org/10.1016/j.jtemb.2022.127061
doi: 10.1016/j.jtemb.2022.127061
pubmed: 35987182
Johnson LA, Kanak MA, Kajdacsy-Balla A, Pestaner JP, Bagasra O (2010) Differential zinc accumulation and expression of human zinc transporter 1 (hZIP1) in prostate glands. Methods 52:316–321. https://doi.org/10.1016/j.ymeth.2010.08.004
doi: 10.1016/j.ymeth.2010.08.004
pubmed: 20705137
Cortesi M, Fridman E, Volkov A, Shilstein S, Chechik R, Breskin A et al (2008) Clinical assessment of the cancer diagnostic value of prostatic zinc: a comprehensive needle-biopsy study. Prostate 68:994–1006. https://doi.org/10.1002/pros.20766
doi: 10.1002/pros.20766
pubmed: 18386292
Costello LC, Franklin RB (2012) Cytotoxic/tumor suppressor role of zinc for the treatment of cancer: an enigma and an opportunity. Expert Rev Anticancer Ther 12:121–128. https://doi.org/10.1586/era.11.190
doi: 10.1586/era.11.190
pubmed: 22149438
pmcid: 3291177
Costello LC, Levy BA, Desouki MM, Zou J, Bagasra O, Johnson LA et al (2011) Decreased zinc and downregulation of ZIP3 zinc uptake transporter in the development of pancreatic adenocarcinoma. Cancer Biol Ther 12:297–303. https://doi.org/10.4161/cbt.12.4.16356
doi: 10.4161/cbt.12.4.16356
pubmed: 21613827
pmcid: 3173731
Puca R, Nardinocchi L, Porru M, Simon AJ, Rechavi G, Leonetti C et al (2011) Restoring p53 active conformation by zinc increases the response of mutant p53 tumor cells to anticancer drugs. Cell Cycle 10:1679–1689. https://doi.org/10.4161/cc.10.10.15642
doi: 10.4161/cc.10.10.15642
pubmed: 21508668
Blanden AR, Yu X, Blayney AJ, Demas C, Ha JH, Liu Y et al (2020) Zinc shapes the folding landscape of p53 and establishes a pathway for reactivating structurally diverse cancer mutants. Elife 9. https://doi.org/10.7554/eLife.61487
Song Y, Leonard SW, Traber MG, Ho E (2009) Zinc deficiency affects DNA damage, oxidative stress, antioxidant defenses, and DNA repair in rats. J Nutr 139:1626–1631. https://doi.org/10.3945/jn.109.106369
doi: 10.3945/jn.109.106369
pubmed: 19625698
pmcid: 3151020
Sliwinski T, Czechowska A, Kolodziejczak M, Jajte J, Wisniewska-Jarosinska M, Blasiak J (2009) Zinc salts differentially modulate DNA damage in normal and cancer cells. Cell Biol Int 33:542–547. https://doi.org/10.1016/j.cellbi.2009.02.004
doi: 10.1016/j.cellbi.2009.02.004
pubmed: 19254773
Ostrakhovitch EA, Cherian MG (2005) Role of p53 and reactive oxygen species in apoptotic response to copper and zinc in epithelial breast cancer cells. Apoptosis 10:111–121. https://doi.org/10.1007/s10495-005-6066-7
doi: 10.1007/s10495-005-6066-7
pubmed: 15711927
Provinciali M, Donnini A, Argentati K, Di Stasio G, Bartozzi B, Bernardini G (2002) Reactive oxygen species modulate Zn(2+)-induced apoptosis in cancer cells. Free Radic Biol Med 32:431–445. https://doi.org/10.1016/s0891-5849(01)00830-9
doi: 10.1016/s0891-5849(01)00830-9
pubmed: 11864783
Rudolf E, Rudolf K, Cervinka M (2005) Zinc induced apoptosis in HEP-2 cancer cells: the role of oxidative stress and mitochondria. BioFactors 23:107–120. https://doi.org/10.1002/biof.5520230206
doi: 10.1002/biof.5520230206
pubmed: 16179752
Feng P, Li T, Guan Z, Franklin RB, Costello LC (2008) The involvement of Bax in zinc-induced mitochondrial apoptogenesis in malignant prostate cells. Mol Cancer 7:25. https://doi.org/10.1186/1476-4598-7-25
doi: 10.1186/1476-4598-7-25
pubmed: 18331646
pmcid: 2329666
Franklin RB, Levy BA, Zou J, Hanna N, Desouki MM, Bagasra O et al (2012) ZIP14 zinc transporter downregulation and zinc depletion in the development and progression of hepatocellular cancer. J Gastrointest Cancer 43:249–257. https://doi.org/10.1007/s12029-011-9269-x
doi: 10.1007/s12029-011-9269-x
pubmed: 21373779
pmcid: 3724761
Arriaga JM, Greco A, Mordoh J, Bianchini M (2014) Metallothionein 1G and zinc sensitize human colorectal cancer cells to chemotherapy. Mol Cancer Ther 13:1369–1381. https://doi.org/10.1158/1535-7163.mct-13-0944
doi: 10.1158/1535-7163.mct-13-0944
pubmed: 24634414
Margalit O, Simon AJ, Yakubov E, Puca R, Yosepovich A, Avivi C et al (2012) Zinc supplementation augments in vivo antitumor effect of chemotherapy by restoring p53 function. Int J Cancer 131:E562–E568. https://doi.org/10.1002/ijc.26441
doi: 10.1002/ijc.26441
pubmed: 21932419
Cirone M, Garufi A, Di Renzo L, Granato M, Faggioni A, D’Orazi G (2013) Zinc supplementation is required for the cytotoxic and immunogenic effects of chemotherapy in chemoresistant p53-functionally deficient cells. Oncoimmunology 2:e26198. https://doi.org/10.4161/onci.26198
doi: 10.4161/onci.26198
pubmed: 24228232
pmcid: 3820813
Xue YN, Yu BB, Liu YN, Guo R, Li JL, Zhang LC et al (2019) Zinc promotes prostate cancer cell chemosensitivity to paclitaxel by inhibiting epithelial-mesenchymal transition and inducing apoptosis. Prostate 79:647–656. https://doi.org/10.1002/pros.23772
doi: 10.1002/pros.23772
pubmed: 30714183
Ninsontia C, Phiboonchaiyanan PP, Chanvorachote P (2016) Zinc induces epithelial to mesenchymal transition in human lung cancer H460 cells via superoxide anion-dependent mechanism. Cancer Cell Int 16:48. https://doi.org/10.1186/s12935-016-0323-4
doi: 10.1186/s12935-016-0323-4
pubmed: 27330411
pmcid: 4912812
Ghosh RD, Das S, Ganguly A, Banerjee K, Chakraborty P, Sarkar A et al (2011) An in vitro and in vivo study of a novel zinc complex, zinc N-(2-hydroxyacetophenone)glycinate to overcome multidrug resistance in cancer. Dalton Trans 40:10873–10884. https://doi.org/10.1039/c1dt10501a
doi: 10.1039/c1dt10501a
pubmed: 21717020
Singh TA, Das J, Sil PC (2020) Zinc oxide nanoparticles: a comprehensive review on its synthesis, anticancer and drug delivery applications as well as health risks. Adv Colloid Interface Sci 286:102317. https://doi.org/10.1016/j.cis.2020.102317
doi: 10.1016/j.cis.2020.102317
pubmed: 33212389
Mitra S, Subia B, Patra P, Chandra S, Debnath N, Das S et al (2012) Porous ZnO nanorod for targeted delivery of doxorubicin: in vitro and in vivo response for therapeutic applications. J Mater Chem 22:24145–54. https://doi.org/10.1039/C2JM35013K
doi: 10.1039/C2JM35013K
Ye H, Wu K, Liu Y, Zhu Y, Luo H, Zou W (2022) Zinc oxide nanoparticle attenuates chemotherapy resistance by inducing cell stemness progression of colorectal cancer via miR-1321/HIF-2α axis. Arab J Chem 15:103938. https://doi.org/10.1016/j.arabjc.2022.103938
doi: 10.1016/j.arabjc.2022.103938
Liu J, Ma X, Jin S, Xue X, Zhang C, Wei T et al (2016) Zinc oxide nanoparticles as adjuvant to facilitate doxorubicin intracellular accumulation and visualize pH-responsive release for overcoming drug resistance. Mol Pharm 13:1723–1730. https://doi.org/10.1021/acs.molpharmaceut.6b00311
doi: 10.1021/acs.molpharmaceut.6b00311
pubmed: 27070828
Li Y, Jiang C, Zhang X, Liao Z, Chen L, Li S et al (2022) Inhibition of ABCC9 by zinc oxide nanoparticles induces ferroptosis and inhibits progression, attenuates doxorubicin resistance in breast cancer. Cancer Nanotechnol 13:3. https://doi.org/10.1186/s12645-021-00109-4
doi: 10.1186/s12645-021-00109-4
Shi J, Karlsson HL, Johansson K, Gogvadze V, Xiao L, Li J et al (2012) Microsomal glutathione transferase 1 protects against toxicity induced by silica nanoparticles but not by zinc oxide nanoparticles. ACS Nano 6:1925–1938. https://doi.org/10.1021/nn2021056
doi: 10.1021/nn2021056
pubmed: 22303956
pmcid: 3314313
Chen H, Luo L, Fan S, Xiong Y, Ling Y, Peng S (2021) Zinc oxide nanoparticles synthesized from Aspergillus terreus induces oxidative stress-mediated apoptosis through modulating apoptotic proteins in human cervical cancer HeLa cells. J Pharm Pharmacol 73:221–232. https://doi.org/10.1093/jpp/rgaa043
doi: 10.1093/jpp/rgaa043
pubmed: 33793807
Akhtar MJ, Ahamed M, Kumar S, Khan MM, Ahmad J, Alrokayan SA (2012) Zinc oxide nanoparticles selectively induce apoptosis in human cancer cells through reactive oxygen species. Int J Nanomedicine 7:845–857. https://doi.org/10.2147/ijn.s29129
doi: 10.2147/ijn.s29129
pubmed: 22393286
pmcid: 3289443
Zijno A, De Angelis I, De Berardis B, Andreoli C, Russo MT, Pietraforte D et al (2015) Different mechanisms are involved in oxidative DNA damage and genotoxicity induction by ZnO and TiO2 nanoparticles in human colon carcinoma cells. Toxicol In Vitro 29:1503–1512. https://doi.org/10.1016/j.tiv.2015.06.009
doi: 10.1016/j.tiv.2015.06.009
pubmed: 26079941
Ali KH, Ibraheem SA, Jabir MS, Ali KA, Taqi ZJ, Dan FM (2019) Zinc oxide nanoparticles induces apoptosis in human breast cancer cells via caspase-8 and P53 pathway. Nano Biomed Eng 11:35–43
Thomas S, Gunasangkaran G, Arumugam VA, Muthukrishnan S (2022) Synthesis and characterization of zinc oxide nanoparticles of solanum nigrum and its anticancer activity via the induction of apoptosis in cervical cancer. Biol Trace Elem Res 200:2684–2697. https://doi.org/10.1007/s12011-021-02898-6
doi: 10.1007/s12011-021-02898-6
pubmed: 34448982
Hoseinzadeh S, Raeisi E, Lemoigne Y, Heidarian E (2019) Effects of combined 5-fluorouracil and ZnO NPs on human breast cancer MCF-7 cells: P53 gene expression, Bcl-2 signaling pathway, and invasion activity. Nanomedicine J 6:232–40
Sharifian A, Baghbani-arani F, Sahebjami H (2020) Effect of topotycan and zinc oxide nanoparticles combination on cytotoxicity and P53 gene expression against breast cancer (MCF-7) cell line. Koomesh J 22:192–7. https://doi.org/10.29252/koomesh.22.1.192
doi: 10.29252/koomesh.22.1.192
Vimala K, Sundarraj S, Paulpandi M, Vengatesan S, Kannan S (2014) Green synthesized doxorubicin loaded zinc oxide nanoparticles regulates the Bax and Bcl-2 expression in breast and colon carcinoma. Process Biochem 49:160–172. https://doi.org/10.1016/j.procbio.2013.10.007
doi: 10.1016/j.procbio.2013.10.007
Wahab R, Kaushik N, Khan F, Kaushik NK, Choi EH, Musarrat J et al (2016) Self-Styled ZnO Nanostructures promotes the cancer cell damage and supresses the epithelial phenotype of glioblastoma. Sci Rep 6:19950. https://doi.org/10.1038/srep19950
doi: 10.1038/srep19950
pubmed: 26818603
pmcid: 4730157
Subramaniyan S, Kamaraj Y, Kumaresan V, Kannaiyan M, David E, Ranganathan B et al (2022) Green synthesized zinc oxide nanoparticles induce apoptosis by suppressing PI3K/Akt/mTOR signaling pathway in osteosarcoma MG63 cells. GTM 1. https://doi.org/10.36922/gtm.v1i1.34
Kim S, Lee SY, Cho HJ (2017) Doxorubicin-wrapped zinc oxide nanoclusters for the therapy of colorectal adenocarcinoma. Nanomaterials (Basel) 7. https://doi.org/10.3390/nano7110354
Hu Y, Zhang H-R, Dong L, Xu M-R, Zhang L, Ding W-P et al (2019) Enhancing tumor chemotherapy and overcoming drug resistance through autophagy-mediated intracellular dissolution of zinc oxide nanoparticles. Nanoscale 11:11789–11807
doi: 10.1039/C8NR08442D
pubmed: 31184642
Kim JH, Jeong MS, Kim DY, Her S, Wie MB (2015) Zinc oxide nanoparticles induce lipoxygenase-mediated apoptosis and necrosis in human neuroblastoma SH-SY5Y cells. Neurochem Int 90:204–214. https://doi.org/10.1016/j.neuint.2015.09.002
doi: 10.1016/j.neuint.2015.09.002
pubmed: 26364578
Zhang C, Liu Z, Zhang Y, Ma L, Song E, Song Y (2020) “Iron free” zinc oxide nanoparticles with ion-leaking properties disrupt intracellular ROS and iron homeostasis to induce ferroptosis. Cell Death Dis 11:183. https://doi.org/10.1038/s41419-020-2384-5
doi: 10.1038/s41419-020-2384-5
pubmed: 32170066
pmcid: 7070056
Hu C, Du W (2020) Zinc oxide nanoparticles (ZnO NPs) combined with cisplatin and gemcitabine inhibits tumor activity of NSCLC cells. Aging (Albany NY) 12:25767–77. https://doi.org/10.18632/aging.104187
doi: 10.18632/aging.104187
pubmed: 33232271
Roy R, Singh SK, Chauhan LK, Das M, Tripathi A, Dwivedi PD (2014) Zinc oxide nanoparticles induce apoptosis by enhancement of autophagy via PI3K/Akt/mTOR inhibition. Toxicol Lett 227:29–40. https://doi.org/10.1016/j.toxlet.2014.02.024
doi: 10.1016/j.toxlet.2014.02.024
pubmed: 24614525
Alemi F, Malakoti F, Vaghari-Tabari M, Soleimanpour J, Shabestani N, Sadigh AR et al (2022) DNA damage response signaling pathways as important targets for combination therapy and chemotherapy sensitization in osteosarcoma. J Cell Physiol 237:2374–2386. https://doi.org/10.1002/jcp.30721
doi: 10.1002/jcp.30721
pubmed: 35383920
Alarifi S, Ali D, Alkahtani S, Verma A, Ahamed M, Ahmed M et al (2013) Induction of oxidative stress, DNA damage, and apoptosis in a malignant human skin melanoma cell line after exposure to zinc oxide nanoparticles. Int J Nanomedicine 8:983–993. https://doi.org/10.2147/ijn.s42028
doi: 10.2147/ijn.s42028
pubmed: 23493450
pmcid: 3593769
Ananthalakshmi R, Rathinam SRXR, Sadiq AM (2021) Apoptotic signalling of Huh7 cancer cells by biofabricated zinc oxide nanoparticles. J Inorg Organomet Polym Mater 31:1764–1773. https://doi.org/10.1007/s10904-020-01852-8
doi: 10.1007/s10904-020-01852-8
Yin X, Li Z, Lyu C, Wang Y, Ding S, Ma C et al (2022) Induced effect of zinc oxide nanoparticles on human acute myeloid leukemia cell apoptosis by regulating mitochondrial division. IUBMB Life 74:519–531. https://doi.org/10.1002/iub.2615
doi: 10.1002/iub.2615
pubmed: 35383422
Sadhukhan P, Kundu M, Chatterjee S, Ghosh N, Manna P, Das J et al (2019) Targeted delivery of quercetin via pH-responsive zinc oxide nanoparticles for breast cancer therapy. Mater Sci Eng C Mater Biol Appl 100:129–140. https://doi.org/10.1016/j.msec.2019.02.096
doi: 10.1016/j.msec.2019.02.096
pubmed: 30948047
Wang J, Gao S, Wang S, Xu Z, Wei L (2018) Zinc oxide nanoparticles induce toxicity in CAL 27 oral cancer cell lines by activating PINK1/Parkin-mediated mitophagy. Int J Nanomedicine 13:3441–3450. https://doi.org/10.2147/ijn.s165699
doi: 10.2147/ijn.s165699
pubmed: 29950828
pmcid: 6016020
Shanmugam K, Sellappan S, Alahmadi TA, Almoallim HS, Natarajan N, Veeraraghavan VP (2022) Green synthesized zinc oxide nanoparticles from Cinnamomum verum bark extract inhibited cell growth and induced caspase-mediated apoptosis in oral cancer KB cells. J Drug Deliv Sci Technol 74:103577. https://doi.org/10.1016/j.jddst.2022.103577
doi: 10.1016/j.jddst.2022.103577
Condello M, De Berardis B, Ammendolia MG, Barone F, Condello G, Degan P et al (2016) ZnO nanoparticle tracking from uptake to genotoxic damage in human colon carcinoma cells. Toxicol In Vitro 35:169–179. https://doi.org/10.1016/j.tiv.2016.06.005
doi: 10.1016/j.tiv.2016.06.005
pubmed: 27317967
Demir E, Creus A, Marcos R (2014) Genotoxicity and DNA repair processes of zinc oxide nanoparticles. J Toxicol Environ Health A 77:1292–1303. https://doi.org/10.1080/15287394.2014.935540
doi: 10.1080/15287394.2014.935540
pubmed: 25268556
Chakraborti S, Chakraborty S, Saha S, Manna A, Banerjee S, Adhikary A et al (2017) PEG-functionalized zinc oxide nanoparticles induce apoptosis in breast cancer cells through reactive oxygen species-dependent impairment of DNA damage repair enzyme NEIL2. Free Radic Biol Med 103:35–47. https://doi.org/10.1016/j.freeradbiomed.2016.11.048
doi: 10.1016/j.freeradbiomed.2016.11.048
pubmed: 27940348
Pati R, Das I, Mehta RK, Sahu R, Sonawane A (2016) Zinc-oxide nanoparticles exhibit genotoxic, clastogenic, cytotoxic and actin depolymerization effects by inducing oxidative stress responses in macrophages and adult mice. Toxicol Sci 150:454–472. https://doi.org/10.1093/toxsci/kfw010
doi: 10.1093/toxsci/kfw010
pubmed: 26794139
Yang R, Wu R, Mei J, Hu FR, Lei CJ (2021) Zinc oxide nanoparticles promotes liver cancer cell apoptosis through inducing autophagy and promoting p53. Eur Rev Med Pharmacol Sci 25:1557–63. https://doi.org/10.26355/eurrev_202102_24864
doi: 10.26355/eurrev_202102_24864
pubmed: 33629325
Li Z, Guo D, Yin X, Ding S, Shen M, Zhang R et al (2020) Zinc oxide nanoparticles induce human multiple myeloma cell death via reactive oxygen species and Cyt-C/Apaf-1/Caspase-9/Caspase-3 signaling pathway in vitro. Biomed Pharmacother 122:109712. https://doi.org/10.1016/j.biopha.2019.109712
doi: 10.1016/j.biopha.2019.109712
pubmed: 31918281
Mahdizadeh R, Homayouni-Tabrizi M, Neamati A, Seyedi SMR, Tavakkol Afshari HS (2019) Green synthesized-zinc oxide nanoparticles, the strong apoptosis inducer as an exclusive antitumor agent in murine breast tumor model and human breast cancer cell lines (MCF7). J Cell Biochem 120:17984–17993. https://doi.org/10.1002/jcb.29065
doi: 10.1002/jcb.29065
pubmed: 31172567
Boskabadi SH, Balanezhad SZ, Neamati A, Tabrizi MH (2021) The green-synthesized zinc oxide nanoparticle as a novel natural apoptosis inducer in human breast (MCF7 and MDA-MB231) and colon (HT-29) cancer cells. Inorg Nano-Metal Chem 51:733–743. https://doi.org/10.1080/24701556.2020.1808991
doi: 10.1080/24701556.2020.1808991
Gu W, Li H, Niu X, Zhou J (2022) Biological fabrication of zinc oxide nanoparticles from Nepeta cataria potentially produces apoptosis through inhibition of proliferative markers in ovarian cancer. Green Process Synth 11:316–326. https://doi.org/10.1515/gps-2022-0016
doi: 10.1515/gps-2022-0016
Chandrasekaran M, Pandurangan M (2016) In vitro selective anti-proliferative effect of zinc oxide nanoparticles against co-cultured C2C12 myoblastoma cancer and 3T3-L1 normal cells. Biol Trace Elem Res 172:148–154. https://doi.org/10.1007/s12011-015-0562-6
doi: 10.1007/s12011-015-0562-6
pubmed: 26563419
Al-Ajmi MF, Hussain A, Ahmed F (2016) Novel synthesis of ZnO nanoparticles and their enhanced anticancer activity: role of ZnO as a drug carrier. Ceram Int 42:4462–4469. https://doi.org/10.1016/j.ceramint.2015.11.133
doi: 10.1016/j.ceramint.2015.11.133
Hassan NA, El-Dessouky MA, Salah Eldin AM, Elgazzar EM, Badawi AM (2023) The novel modified 5-fluorouracil with zinc oxide nano-particles and its combined effect with gamma radiations on human cancer cell lines. Egypt J Radiat Sci Appl. https://doi.org/10.21608/ejrsa.2023.193748.1150
doi: 10.21608/ejrsa.2023.193748.1150
Xiao X, Liang S, Zhao Y, Huang D, Xing B, Cheng Z et al (2020) Core-shell structured 5-FU@ZIF-90@ZnO as a biodegradable nanoplatform for synergistic cancer therapy. Nanoscale 12:3846–3854. https://doi.org/10.1039/c9nr09869k
doi: 10.1039/c9nr09869k
pubmed: 31995084
Mishra P, Ahmad A, Al-Keridis LA, Alshammari N, Alabdallah NM, Muzammil K et al (2022) Doxorubicin-conjugated zinc oxide nanoparticles, biogenically synthesised using a fungus Aspergillus niger, exhibit high therapeutic efficacy against lung cancer cells. Molecules 27. https://doi.org/10.3390/molecules27082590
Li Z, Zhang S, Liu M, Zhong T, Li H, Wang J et al (2022) Antitumor activity of the zinc oxide nanoparticles coated with low-molecular-weight heparin and doxorubicin complex in vitro and in vivo. Mol Pharm 19:4179–4190. https://doi.org/10.1021/acs.molpharmaceut.2c00553
doi: 10.1021/acs.molpharmaceut.2c00553
pubmed: 36223494
Alavi N, Maghami P, Fani Pakdel A, Rezaei M, Avan A (2023) The advance anticancer role of polymeric core-shell ZnO nanoparticles containing oxaliplatin in colorectal cancer. J Biochem Mol Toxicol 37:e23325. https://doi.org/10.1002/jbt.23325
doi: 10.1002/jbt.23325
pubmed: 36843533
Mohamed Asik R, Gowdhami B, Mohamed Jaabir MS, Archunan G, Suganthy N (2019) Anticancer potential of zinc oxide nanoparticles against cervical carcinoma cells synthesized via biogenic route using aqueous extract of Gracilaria edulis. Mater Sci Eng C Mater Biol Appl 103:109840. https://doi.org/10.1016/j.msec.2019.109840
doi: 10.1016/j.msec.2019.109840
Alipour S, Babaei G, Gholizadeh-Ghaleh Aziz S, Abolhasani S (2022) Alantolactone and ZnO nanoparticles induce apoptosis activity of cisplatin in an ovarian cancer cell line (SKOV3). Res Pharm Sci 17:294–304. https://doi.org/10.4103/1735-5362.343083
doi: 10.4103/1735-5362.343083
pubmed: 35531132
pmcid: 9075027
Vimala DK, Kannan S (2017) 20PThe suppression of breast cancer cells growth by irinotecan loaded zinc oxide nanoparticles through E2F3/Akt/Mdm2/AR controlled apoptosis. Ann Oncol 28. https://doi.org/10.1093/annonc/mdx137.005
Akbarian M, Mahjoub S, Elahi SM, Zabihi E, Tashakkorian H (2020) Green synthesis, formulation and biological evaluation of a novel ZnO nanocarrier loaded with paclitaxel as drug delivery system on MCF-7 cell line. Colloids Surf B Biointerfaces 186:110686. https://doi.org/10.1016/j.colsurfb.2019.110686
doi: 10.1016/j.colsurfb.2019.110686
pubmed: 31816463
Nabil A, Elshemy MM, Asem M, Abdel-Motaal M, Gomaa HF, Zahran F et al (2020) Zinc oxide nanoparticle synergizes sorafenib anticancer efficacy with minimizing its cytotoxicity. Oxid Med Cell Longev 2020:1362104. https://doi.org/10.1155/2020/1362104
doi: 10.1155/2020/1362104
pubmed: 32566073
pmcid: 7275957
Firouzi Amandi A, Jokar E, Eslami M, Dadashpour M, Rezaie M, Yazdani Y et al (2023) Enhanced anti-cancer effect of artemisinin- and curcumin-loaded niosomal nanoparticles against human colon cancer cells. Med Oncol 40:170. https://doi.org/10.1007/s12032-023-02032-7
doi: 10.1007/s12032-023-02032-7
pubmed: 37156929
Shafiei G, Jafari-Gharabaghlou D, Farhoudi-Sefidan-Jadid M, Alizadeh E, Fathi M, Zarghami N (2023) Targeted delivery of silibinin via magnetic niosomal nanoparticles: potential application in treatment of colon cancer cells. Front Pharmacol 14:1174120. https://doi.org/10.3389/fphar.2023.1174120
doi: 10.3389/fphar.2023.1174120
pubmed: 37441534
pmcid: 10335571
Hassani N, Jafari-Gharabaghlou D, Dadashpour M, Zarghami N (2022) The effect of dual bioactive compounds artemisinin and metformin co-loaded in PLGA-PEG nano-particles on breast cancer cell lines: potential apoptotic and anti-proliferative action. Appl Biochem Biotechnol 194:4930–4945. https://doi.org/10.1007/s12010-022-04000-9
doi: 10.1007/s12010-022-04000-9
pubmed: 35674922
Firouzai-Amandi A, Tarahomi M, Rahmani Youshanlouie H, Mosaddeghi Heris R, Jafari-Gharabaghlou D, Zarghami N et al (2022) Development, characterization, and in vitro evaluation of cytotoxic activity of rutin loaded PCL-PEG nanoparticles against Skov3 ovarian cancer cell. Asian Pac J Cancer Prev 23:1951–7. https://doi.org/10.31557/apjcp.2022.23.6.1951
doi: 10.31557/apjcp.2022.23.6.1951
pubmed: 35763636
Banupriya SJS, Kavithaa K, Poornima A, Haribalan P, Sri Renukadevi B, Sumathi S (2021) Modulation of gene expression by thymoquinone conjugated zinc oxide nanoparticles arrested cell cycle, DNA damage and increased apoptosis in triple negative breast cancer cell line MDA-MB-231. Drug Dev Ind Pharm 47:1943–51. https://doi.org/10.1080/03639045.2022.2072513
doi: 10.1080/03639045.2022.2072513
Mahalanobish S, Kundu M, Ghosh S, Das J, Sil PC (2022) Fabrication of phenyl boronic acid modified pH-responsive zinc oxide nanoparticles as targeted delivery of chrysin on human A549 cells. Toxicol Rep 9:961–969. https://doi.org/10.1016/j.toxrep.2022.04.017
doi: 10.1016/j.toxrep.2022.04.017
pubmed: 35875254
pmcid: 9301599
Lee JH, Yun CW, Han YS, Kim S, Jeong D, Kwon HY et al (2018) Melatonin and 5-fluorouracil co-suppress colon cancer stem cells by regulating cellular prion protein-Oct4 axis. J Pineal Res 65:e12519. https://doi.org/10.1111/jpi.12519
doi: 10.1111/jpi.12519
pubmed: 30091203
Xu J, Liu D, Niu H, Zhu G, Xu Y, Ye D et al (2017) Resveratrol reverses doxorubicin resistance by inhibiting epithelial-mesenchymal transition (EMT) through modulating PTEN/Akt signaling pathway in gastric cancer. J Exp Clin Cancer Res 36:19. https://doi.org/10.1186/s13046-016-0487-8
doi: 10.1186/s13046-016-0487-8
pubmed: 28126034
pmcid: 5270306
He G, Nie JJ, Liu X, Ding Z, Luo P, Liu Y et al (2023) Zinc oxide nanoparticles inhibit osteosarcoma metastasis by downregulating β-catenin via HIF-1α/BNIP3/LC3B-mediated mitophagy pathway. Bioact Mater 19:690–702. https://doi.org/10.1016/j.bioactmat.2022.05.006
doi: 10.1016/j.bioactmat.2022.05.006
pubmed: 35600978
Bozgeyik I, Ege M, Temiz E, Erdal B, Koyuncu I, Temiz C et al (2023) Novel zinc oxide nanoparticles of Teucrium polium suppress the malignant progression of gastric cancer cells through modulating apoptotic signaling pathways and epithelial to mesenchymal transition. Gene 853:147091. https://doi.org/10.1016/j.gene.2022.147091
doi: 10.1016/j.gene.2022.147091
pubmed: 36464168
Berehu HM, Anupriya S, Khan MI, Chakraborty R, Lavudi K, Penchalaneni J et al (2021) Cytotoxic potential of biogenic zinc oxide nanoparticles synthesized from Swertia chirayita leaf extract on colorectal cancer cells. Front Bioeng Biotechnol 9:788527. https://doi.org/10.3389/fbioe.2021.788527
doi: 10.3389/fbioe.2021.788527
pubmed: 34976976
pmcid: 8714927
Lei J-Y, Li S-X, Li F, Li H, Lei Y-S (2022) Zinc oxide nanoparticle regulates the ferroptosis, proliferation, invasion and steaminess of cervical cancer by miR-506-3p/CD164 signaling. Cancer Nanotechnology 13:33. https://doi.org/10.1186/s12645-022-00134-x
doi: 10.1186/s12645-022-00134-x
Yang Z, Pu M, Dong X, Ji F, Priya Veeraraghavan V, Yang H (2020) Piperine loaded zinc oxide nanocomposite inhibits the PI3K/AKT/mTOR signaling pathway via attenuating the development of gastric carcinoma: in vitro and in vivo studies. Arab J Chem 13:5501–5516. https://doi.org/10.1016/j.arabjc.2020.03.028
doi: 10.1016/j.arabjc.2020.03.028
Sun H, Mohan SK, Chinnathambi A, Alahmadi TA, Manikandan V, Rengarajan T et al (2021) Green synthesized zinc oxide/neodymium nanocomposites from Avaram Senna flower extract induces apoptosis in gastric cancer AGS cell line through inhibition of the PI3K/AKT/mTOR signaling pathway. J King Saud Univ - Sci 33:101641. https://doi.org/10.1016/j.jksus.2021.101641
doi: 10.1016/j.jksus.2021.101641
Akshata A, Rao S, Satyanarayana M, Narayanaswamy H, Byregowda S, Manjunathareddy G (2019) Methotrexate induced serum biochemical alteration and its amelioration by zinc oxide nanoparticles in Wistar albino rats. Front J Vet Anim Sci 8:27
Barakat LAA, Barakat N, Zakaria MM, Khirallah SM (2020) Protective role of zinc oxide nanoparticles in kidney injury induced by cisplatin in rats. Life Sci 262:118503. https://doi.org/10.1016/j.lfs.2020.118503
doi: 10.1016/j.lfs.2020.118503
pubmed: 33007311
Majd NE, Tabandeh MR, Hosseinifar S, Rezaie A, Papi H (2023) Effects of chemical and green nano-zinc oxide on histological changes, oxidative stress, and apoptosis in rat kidney associated with cisplatin. Braz J Pharm Sci 59. https://doi.org/10.1590/s2175-97902023e20960 .
Pavithra S, Preetha S, Thangapandiyan M, Shanmuganathan S (2020) Effect of fractionated pectin powder capped zinc oxide nanoparticle in hematological and biochemical parameters of 5-fluorouracil induced toxicity in male rats. Pharma Innovation 9:431–433
Erfani Majd N, Tabandeh MR, Hosseinifar S, Rahimi Zarneh S (2021) Chemical and Green ZnO nanoparticles ameliorated adverse effects of cisplatin on histological structure, antioxidant defense system and neurotrophins expression in rat hippocampus. J Chem Neuroanat 116:101990. https://doi.org/10.1016/j.jchemneu.2021.101990
doi: 10.1016/j.jchemneu.2021.101990
pubmed: 34146667
Saman S, Moradhaseli S, Shokouhian A, Ghorbani M (2013) Histopathological effects of ZnO nanoparticles on liver and heart tissues in Wistar rats. Adv Biores 4:83–88
Liu S, Zhou H, Shi Y, Yi S, Wang X, Li J et al (2023) Zinc oxide nanoparticles induce renal injury by initiating oxidative stress, mitochondrial damage and apoptosis in renal tubular epithelial cells. Biol Trace Elem Res. https://doi.org/10.1007/s12011-023-03683-3
doi: 10.1007/s12011-023-03683-3
pubmed: 38157093
pmcid: 10620313
Seok SH, Cho WS, Park JS, Na Y, Jang A, Kim H et al (2013) Rat pancreatitis produced by 13-week administration of zinc oxide nanoparticles: biopersistence of nanoparticles and possible solutions. J Appl Toxicol 33:1089–1096. https://doi.org/10.1002/jat.2862
doi: 10.1002/jat.2862
pubmed: 23408656
El-Maddawy ZK, Abd El Naby WSH (2019) Protective effects of zinc oxide nanoparticles against doxorubicin induced testicular toxicity and DNA damage in male rats. Toxicol Res (Camb) 8:654–62. https://doi.org/10.1039/c9tx00052f
doi: 10.1039/c9tx00052f
pubmed: 31588342
Erfani Majd N, Hajirahimi A, Tabandeh MR, Molaei R (2021) Protective effects of green and chemical zinc oxide nanoparticles on testis histology, sperm parameters, oxidative stress markers and androgen production in rats treated with cisplatin. Cell Tissue Res 384:561–575. https://doi.org/10.1007/s00441-020-03350-2
doi: 10.1007/s00441-020-03350-2
pubmed: 33433689
Badkoobeh P, Parivar K, Kalantar SM, Hosseini SD, Salabat A (2013) Effect of nano-zinc oxide on doxorubicin- induced oxidative stress and sperm disorders in adult male Wistar rats. Iran J Reprod Med 11:355–64
pubmed: 24639766
pmcid: 3941413
Espanani H, Fazilati M, Sadeghi L, YousefiBabadi V, Bakhshiani SAE, Amraie E (2013) Investigation the zinc oxide nanoparticle’s effect on sex hormones and cholesterol in rat. Int Res J Biol Sci 2:54–58
Hong X, Shao N, Yin L, Li C, Tao G, Sun Y et al (2022) Exposure to zinc oxide nanoparticles affects testicular structure, reproductive development and spermatogenesis in parental and offspring male rats. Ann Transl Med 10:751. https://doi.org/10.21037/atm-22-3047
doi: 10.21037/atm-22-3047
pubmed: 35957732
pmcid: 9358518
Hamam ET, Awadalla A, Shokeir AA, Aboul-Naga AM (2022) Zinc oxide nanoparticles attenuate prepubertal exposure to cisplatin-induced testicular toxicity and spermatogenesis impairment in rats. Toxicology 468:153102. https://doi.org/10.1016/j.tox.2022.153102
doi: 10.1016/j.tox.2022.153102
pubmed: 35074511
Ibraheem SR, Ibrahim MR (2016) Physiological and histological effects of (zinc and iron) oxide nanoparticles on some fertility parameters in female mice. Al-Mustansiriyah J Sci 27:1–10
doi: 10.23851/mjs.v27i5.160
Efendic F, Sapmaz T, Canbaz HT, Pence HH, Irkorucu O (2022) Histological and biochemical apoptosis changes of female rats’ ovary by Zinc oxide nanoparticles and potential protective effects of l-arginine: an experimental study. Ann Med Surg (Lond) 74:103290. https://doi.org/10.1016/j.amsu.2022.103290
doi: 10.1016/j.amsu.2022.103290
pubmed: 35198165
pmcid: 8844786