Comparative performances of machine learning algorithms in radiomics and impacting factors.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
28 08 2023
Historique:
received: 10 03 2023
accepted: 30 07 2023
medline: 31 8 2023
pubmed: 29 8 2023
entrez: 28 8 2023
Statut: epublish

Résumé

There are no current recommendations on which machine learning (ML) algorithms should be used in radiomics. The objective was to compare performances of ML algorithms in radiomics when applied to different clinical questions to determine whether some strategies could give the best and most stable performances regardless of datasets. This study compares the performances of nine feature selection algorithms combined with fourteen binary classification algorithms on ten datasets. These datasets included radiomics features and clinical diagnosis for binary clinical classifications including COVID-19 pneumonia or sarcopenia on CT, head and neck, orbital or uterine lesions on MRI. For each dataset, a train-test split was created. Each of the 126 (9 × 14) combinations of feature selection algorithms and classification algorithms was trained and tuned using a ten-fold cross validation, then AUC was computed. This procedure was repeated three times per dataset. Best overall performances were obtained with JMI and JMIM as feature selection algorithms and random forest and linear regression models as classification algorithms. The choice of the classification algorithm was the factor explaining most of the performance variation (10% of total variance). The choice of the feature selection algorithm explained only 2% of variation, while the train-test split explained 9%.

Identifiants

pubmed: 37640728
doi: 10.1038/s41598-023-39738-7
pii: 10.1038/s41598-023-39738-7
pmc: PMC10462640
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

14069

Informations de copyright

© 2023. Springer Nature Limited.

Références

Sci Rep. 2015 Aug 17;5:13087
pubmed: 26278466
Neuroimage. 2018 Oct 15;180(Pt A):68-77
pubmed: 28655633
Eur Radiol. 2019 Mar;29(3):1391-1399
pubmed: 30194472
Radiology. 2020 Nov;297(2):361-371
pubmed: 32930650
NPJ Digit Med. 2022 Apr 12;5(1):48
pubmed: 35413988
BMC Bioinformatics. 2006 Feb 23;7:91
pubmed: 16504092
Eur Radiol. 2022 Jul;32(7):4728-4737
pubmed: 35304638
Med Microecol. 2020 Jun;4:
pubmed: 34368751
Eur Radiol. 2023 Mar;33(3):1884-1894
pubmed: 36282312
Mil Med Res. 2023 May 16;10(1):22
pubmed: 37189155
Br J Cancer. 2020 Mar;122(7):929-930
pubmed: 31937924
Invest Radiol. 2021 Mar 1;56(3):173-180
pubmed: 32932375
BioData Min. 2017 Dec 11;10:36
pubmed: 29238404
PLoS One. 2021 Aug 12;16(8):e0256152
pubmed: 34383858
Radiol Artif Intell. 2020 Mar 25;2(2):e200029
pubmed: 33937821
Med Image Anal. 2021 Jan;67:101860
pubmed: 33171345
Korean J Radiol. 2019 Jul;20(7):1124-1137
pubmed: 31270976
Nat Rev Clin Oncol. 2017 Dec;14(12):749-762
pubmed: 28975929

Auteurs

Antoine Decoux (A)

Université Paris Cité, PARCC UMRS 970, INSERM, Paris, France.
Unité de Recherche Clinique, Center d'Investigation Clinique 1418 Épidémiologie Clinique, Université Paris Cité, AP-HP, Hôpital Européen Georges Pompidou, INSERM, Paris, France.

Loic Duron (L)

Université Paris Cité, PARCC UMRS 970, INSERM, Paris, France.
Department of Radiology, Hôpital Fondation Ophtalmologique Adolphe de Rothschild, Paris, France.

Paul Habert (P)

Université Paris Cité, PARCC UMRS 970, INSERM, Paris, France.
Imaging Department, Hôpital Nord, APHM, Aix Marseille University, Marseille, France.
Aix Marseille Univ, LIIE, Marseille, France.

Victoire Roblot (V)

Université Paris Cité, PARCC UMRS 970, INSERM, Paris, France.

Emina Arsovic (E)

Université Paris Cité, PARCC UMRS 970, INSERM, Paris, France.

Guillaume Chassagnon (G)

Department of Radiology, Université Paris Cité, AP-HP, Hôpital Cochin, Paris, France.

Armelle Arnoux (A)

Unité de Recherche Clinique, Center d'Investigation Clinique 1418 Épidémiologie Clinique, Université Paris Cité, AP-HP, Hôpital Européen Georges Pompidou, INSERM, Paris, France.

Laure Fournier (L)

Department of Radiology, Université Paris Cité, AP-HP, Hôpital Européen Georges Pompidou, PARCC UMRS 970, INSERM, Paris, France. laure.fournier@aphp.fr.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH