Intravital measurements of solid stresses in tumours reveal length-scale and microenvironmentally dependent force transmission.


Journal

Nature biomedical engineering
ISSN: 2157-846X
Titre abrégé: Nat Biomed Eng
Pays: England
ID NLM: 101696896

Informations de publication

Date de publication:
Nov 2023
Historique:
received: 27 05 2022
accepted: 19 07 2023
medline: 17 11 2023
pubmed: 29 8 2023
entrez: 28 8 2023
Statut: ppublish

Résumé

In cancer, solid stresses impede the delivery of therapeutics to tumours and the trafficking and tumour infiltration of immune cells. Understanding such consequences and the origin of solid stresses requires their probing in vivo at the cellular scale. Here we report a method for performing volumetric and longitudinal measurements of solid stresses in vivo, and findings from its applicability to tumours. We used multimodal intravital microscopy of fluorescently labelled polyacrylamide beads injected in breast tumours in mice as well as mathematical modelling to compare solid stresses at the single-cell and tissue scales, in primary and metastatic tumours, in vitro and in mice, and in live mice and post-mortem tissue. We found that solid-stress transmission is scale dependent, with tumour cells experiencing lower stresses than their embedding tissue, and that tumour cells in lung metastases experience substantially higher solid stresses than those in the primary tumours. The dependence of solid stresses on length scale and the microenvironment may inform the development of therapeutics that sensitize cancer cells to such mechanical forces.

Identifiants

pubmed: 37640900
doi: 10.1038/s41551-023-01080-8
pii: 10.1038/s41551-023-01080-8
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1473-1492

Subventions

Organisme : U.S. Department of Health and Human Services | NIH | NIH Office of the Director (OD)
ID : S10OD024993
Organisme : U.S. Department of Health and Human Services | National Institutes of Health (NIH)
ID : DP2HL168562
Organisme : U.S. Department of Health and Human Services | National Institutes of Health (NIH)
ID : R21EB031332

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Nia, H. T., Munn, L. L. & Jain, R. K. Physical traits of cancer. Science 370, 6516 (2020).
doi: 10.1126/science.aaz0868
Kechagia, J. Z., Ivaska, J. & Roca-Cusachs, P. Integrins as biomechanical sensors of the microenvironment. Nat. Rev. Mol. Cell Biol. 20, 457–473 (2019).
pubmed: 31182865 doi: 10.1038/s41580-019-0134-2
Benham-Pyle, B. W., Pruitt, B. L. & Nelson, W. J. Mechanical strain induces E-cadherin-dependent Yap1 and β-catenin activation to drive cell cycle entry. Science 348, 1024–1027 (2015).
pubmed: 26023140 pmcid: 4572847 doi: 10.1126/science.aaa4559
Munn, L. L. & Nia, H. T. Mechanosensing tensile solid stresses. Proc. Natl Acad. Sci. USA 116, 21960–21962 (2019).
pubmed: 31619566 pmcid: 6825278 doi: 10.1073/pnas.1916115116
Levayer, R. Solid stress, competition for space and cancer: the opposing roles of mechanical cell competition in tumour initiation and growth. Semin. Cancer Biol. 63, 69–80 (2020).
pubmed: 31077845 pmcid: 7221353 doi: 10.1016/j.semcancer.2019.05.004
Smith, M. L. et al. Force-induced unfolding of fibronectin in the extracellular matrix of living cells. PLoS Biol. 5, e268 (2007).
pubmed: 17914904 pmcid: 1994993 doi: 10.1371/journal.pbio.0050268
Saini, K., Cho, S., Dooling, L. J. & Discher, D. E. Tension in fibrils suppresses their enzymatic degradation—a molecular mechanism for ‘use it or lose it’. Matrix Biol. 85-86, 34–46 (2020).
pubmed: 31201857 doi: 10.1016/j.matbio.2019.06.001
Kubow, K. E. et al. Mechanical forces regulate the interactions of fibronectin and collagen I in extracellular matrix. Nat. Commun. 6, 8026 (2015).
pubmed: 26272817 doi: 10.1038/ncomms9026
Kirby, T. J. & Lammerding, J. Emerging views of the nucleus as a cellular mechanosensor. Nat. Cell Biol. 20, 373–381 (2018).
pubmed: 29467443 pmcid: 6440800 doi: 10.1038/s41556-018-0038-y
Cho, S., Irianto, J. & Discher, D. E. Mechanosensing by the nucleus: from pathways to scaling relationships. J. Cell Biol. 216, 305–315 (2017).
pubmed: 28043971 pmcid: 5294790 doi: 10.1083/jcb.201610042
Chauhan, V. P. et al. Angiotensin inhibition enhances drug delivery and potentiates chemotherapy by decompressing tumour blood vessels. Nat. Commun. 4, 2516 (2013).
pubmed: 24084631 doi: 10.1038/ncomms3516
Padera, T. P. et al. Cancer cells compress intratumour vessels. Nature 427, 695 (2004).
pubmed: 14973470 doi: 10.1038/427695a
Stylianopoulos, T. et al. Causes, consequences, and remedies for growth-induced solid stress in murine and human tumors. Proc. Natl Acad. Sci. USA 109, 15101–15108 (2012).
pubmed: 22932871 pmcid: 3458380 doi: 10.1073/pnas.1213353109
Mpekris, F. et al. Normalizing the microenvironment overcomes vessel compression and resistance to nano-immunotherapy in breast cancer lung metastasis. Adv. Sci. 8, 2001917 (2021).
doi: 10.1002/advs.202001917
Jain, R. K. Antiangiogenesis strategies revisited: from starving tumors to alleviating hypoxia. Cancer Cell. 26, 605–622 (2014).
pubmed: 25517747 pmcid: 4269830 doi: 10.1016/j.ccell.2014.10.006
Munn, L. L. & Jain, R. K. Vascular regulation of antitumor immunity. Science 365, 544–545 (2019).
pubmed: 31395771 pmcid: 7321824 doi: 10.1126/science.aaw7875
Jones, D. et al. Solid stress impairs lymphocyte infiltration into lymph-node metastases. Nat. Biomed. Eng. 5, 1426–1436 (2021).
pubmed: 34282290 pmcid: 8678215 doi: 10.1038/s41551-021-00766-1
Tse, J. M. et al. Mechanical compression drives cancer cells toward invasive phenotype. Proc. Natl Acad. Sci. USA 109, 911–916 (2012).
pubmed: 22203958 doi: 10.1073/pnas.1118910109
Das, J. & Maiti, T. K. in Autophagy in Tumor and Tumor Microenvironment Ch. 8, 171–182 (Springer, 2020).
Fernandez-Sanchez, M. E. et al. Mechanical induction of the tumorigenic β-catenin pathway by tumour growth pressure. Nature 523, 92–95 (2015).
pubmed: 25970250 doi: 10.1038/nature14329
Seano, G. et al. Solid stress in brain tumours causes neuronal loss and neurological dysfunction and can be reversed by lithium. Nat. Biomed. Eng. 3, 230–245 (2019).
pubmed: 30948807 pmcid: 6452896 doi: 10.1038/s41551-018-0334-7
Nia, H. T. et al. In vivo compression and imaging in mouse brain to measure the effects of solid stress. Nat. Protoc. 15, 2321–2340 (2020).
pubmed: 32681151 doi: 10.1038/s41596-020-0328-2
Panagi, M. et al. Polymeric micelles effectively reprogram the tumor microenvironment to potentiate nano-immunotherapy in mouse breast cancer models. Nat. Commun. 13, 7165 (2022).
pubmed: 36418896 pmcid: 9684407 doi: 10.1038/s41467-022-34744-1
Provenzano, P. P. et al. Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. Cancer Cell. 21, 418–429 (2012).
pubmed: 22439937 pmcid: 3371414 doi: 10.1016/j.ccr.2012.01.007
Zhao, Y. et al. Losartan treatment enhances chemotherapy efficacy and reduces ascites in ovarian cancer models by normalizing the tumor stroma. Proc. Natl Acad. Sci. USA 116, 2210–2219 (2019).
pubmed: 30659155 pmcid: 6369817 doi: 10.1073/pnas.1818357116
Proton w/FOLFIRINOX-losartan for pancreatic cancer; identifier NCT01821729. ClinicalTrials.gov https://classic.clinicaltrials.gov/ct2/show/NCT01821729 (2020).
Murphy, J. E. et al. Total neoadjuvant therapy with FOLFIRINOX in combination with losartan followed by chemoradiotherapy for locally advanced pancreatic cancer: a phase 2 clinical trial. JAMA Oncol. 5, 1020–1027 (2019).
pubmed: 31145418 pmcid: 6547247 doi: 10.1001/jamaoncol.2019.0892
Nia, H. T. et al. Quantifying solid stress and elastic energy from excised or in situ tumors. Nat. Protoc. 13, 1091–1105 (2018).
pubmed: 29674756 pmcid: 6546092 doi: 10.1038/nprot.2018.020
Nia, H. T. et al. Solid stress and elastic energy as measures of tumour mechanopathology. Nat. Biomed. Eng. 1, 0004 (2016).
pubmed: 28966873 pmcid: 5621647 doi: 10.1038/s41551-016-0004
Voutouri, C. et al. Role of constitutive behavior and tumor–host mechanical interactions in the state of stress and growth of solid tumors. PLoS ONE 9, e104717 (2014).
pubmed: 25111061 pmcid: 4128744 doi: 10.1371/journal.pone.0104717
Dolega, M. E. et al. Cell-like pressure sensors reveal increase of mechanical stress towards the core of multicellular spheroids under compression. Nat. Commun. 8, 14056 (2017).
pubmed: 28128198 pmcid: 5290143 doi: 10.1038/ncomms14056
Helmlinger, G. et al. Solid stress inhibits the growth of multicellular tumor spheroids. Nat. Biotechnol. 15, 778–783 (1997).
pubmed: 9255794 doi: 10.1038/nbt0897-778
Shah, M. K., Leary, E. A. & Darling, E. M. Integration of hyper-compliant microparticles into a 3D melanoma tumor model. J. Biomech. 82, 46–53 (2019).
pubmed: 30392774 doi: 10.1016/j.jbiomech.2018.10.018
Islam, M. T., Tasciotti, E. & Righetti, R. Non-invasive imaging of normalized solid stress in cancers in vivo. IEEE J. Transl. Eng. Health Med. 7, 4300209 (2019).
pubmed: 32309062 doi: 10.1109/JTEHM.2019.2932059
Islam, M. T. & Righetti, R. A new poroelastography method to assess the solid stress distribution in cancers. IEEE Access. 7, 103404–103415 (2019).
doi: 10.1109/ACCESS.2019.2929021
Islam, M. T. & Righetti, R. A novel finite element model to assess the effect of solid stress inside tumors on elastographic normal strains and fluid pressure. J. Eng. Sci. Med Diagn. Ther. 2, 031006 (2019).
Wagstaff, L. et al. Mechanical cell competition kills cells via induction of lethal p53 levels. Nat. Commun. 7, 11373 (2016).
pubmed: 27109213 pmcid: 4848481 doi: 10.1038/ncomms11373
Takao, S., Taya, M. & Chiew, C. Mechanical stress-induced cell death in breast cancer cells. Biol. Open. 8, bio043133 (2019).
pubmed: 31362953 pmcid: 6737978 doi: 10.1242/bio.043133
Matamoro-Vidal, A. & Levayer, R. Multiple influences of mechanical forces on cell competition. Curr. Biol. 29, R762–R774 (2019).
pubmed: 31386857 doi: 10.1016/j.cub.2019.06.030
McGrail, D. J. et al. Osmotic regulation is required for cancer cell survival under solid stress. Biophys. J. 109, 1334–1337 (2015).
pubmed: 26445434 pmcid: 4601008 doi: 10.1016/j.bpj.2015.07.046
Hepworth, D. G., Steven-fountain, A., Bruce, D. M. & Vincent, J. F. Affine versus non-affine deformation in soft biological tissues, measured by the reorientation and stretching of collagen fibres through the thickness of compressed porcine skin. J. Biomech. 34, 341–346 (2001).
pubmed: 11182125 doi: 10.1016/S0021-9290(00)00183-4
Guilak, F. & Mow, V. C. The mechanical environment of the chondrocyte: a biphasic finite element model of cell-matrix interactions in articular cartilage. J. Biomech. 33, 1663–1673 (2000).
pubmed: 11006391 doi: 10.1016/S0021-9290(00)00105-6
Chan, V. W. L. et al. Image-based multi-scale mechanical analysis of strain amplification in neurons embedded in collagen gel. Comput. Methods Biomech. Biomed. Eng. 22, 113–129 (2019).
doi: 10.1080/10255842.2018.1538414
Girardo, S. et al. Standardized microgel beads as elastic cell mechanical probes. J. Mater. Chem. B 6, 6245–6261 (2018).
pubmed: 32254615 doi: 10.1039/C8TB01421C
Lee, W. et al. Dispersible hydrogel force sensors reveal patterns of solid mechanical stress in multicellular spheroid cultures. Nat. Commun. 10, 144 (2019).
pubmed: 30635553 pmcid: 6329783 doi: 10.1038/s41467-018-07967-4
Li, W. et al. Combining losartan with radiotherapy increases tumor control and inhibits lung metastases from a HER2/neu-positive orthotopic breast cancer model. Radiat. Oncol. 16, 48 (2021).
pubmed: 33663521 pmcid: 7934382 doi: 10.1186/s13014-021-01775-9
Borriello, L., Condeelis, J., Entenberg, D. & Oktay, M. H. Breast cancer cell re-dissemination from lung metastases—a mechanism for enhancing metastatic burden. J. Clin. Med. 10, 2340 (2021).
pubmed: 34071839 pmcid: 8199463 doi: 10.3390/jcm10112340
Traber, N. et al. Polyacrylamide bead sensors for in vivo quantification of cell-scale stress in zebrafish development. Sci. Rep. 9, 17031 (2019).
pubmed: 31745109 pmcid: 6864055 doi: 10.1038/s41598-019-53425-6
Boudou, T. et al. Nonlinear elastic properties of polyacrylamide gels: implications for quantification of cellular forces. Biorheology 46, 191–205 (2009).
pubmed: 19581727 pmcid: 4698164 doi: 10.3233/BIR-2009-0540
Islam, M. T. et al. Non-invasive imaging of Young’s modulus and Poisson’s ratio in cancers in vivo. Sci. Rep. 10, 7266 (2020).
pubmed: 32350327 pmcid: 7190860 doi: 10.1038/s41598-020-64162-6
Stylianopoulos, T. & Jain, R. K. Combining two strategies to improve perfusion and drug delivery in solid tumors. Proc. Natl Acad. Sci. USA 110, 18632–18637 (2013).
pubmed: 24167277 pmcid: 3832007 doi: 10.1073/pnas.1318415110
Jacobetz, M. A. et al. Hyaluronan impairs vascular function and drug delivery in a mouse model of pancreatic cancer. Gut 62, 112–120 (2013).
pubmed: 22466618 doi: 10.1136/gutjnl-2012-302529
Islam, M. T., Tang, S. & Righetti, R. Non-invasive assessment of the spatial and temporal distributions of interstitial fluid pressure, fluid velocity and fluid flow in cancers in vivo. IEEE Access. 89222–89233 (2021).
Chauhan, V. P. et al. Compression of pancreatic tumor blood vessels by hyaluronan is caused by solid stress and not interstitial fluid pressure. Cancer Cell 26, 14–15 (2014).
pubmed: 25026209 pmcid: 4381566 doi: 10.1016/j.ccr.2014.06.003
Boucher, Y., Baxter, L. T. & Jain, R. K. Interstitial pressure gradients in tissue-isolated and subcutaneous tumors: implications for therapy. Cancer Res. 50, 4478–4484 (1990).
pubmed: 2369726
Zanetti-Dallenbach, R. et al. Length scale matters: real-time elastography versus nanomechanical profiling by atomic force microscopy for the diagnosis of breast lesions. BioMed Res. Int. 2018, 3840597 (2018).
pubmed: 30410929 pmcid: 6206582 doi: 10.1155/2018/3840597
Plodinec, M. et al. The nanomechanical signature of breast cancer. Nat. Nanotechnol. 7, 757–765 (2012).
pubmed: 23085644 doi: 10.1038/nnano.2012.167
Padera, T. P. et al. Differential response of primary tumor versus lymphatic metastasis to VEGFR-2 and VEGFR-3 kinase inhibitors cediranib and vandetanib. Mol. Cancer Ther. 7, 2272–2279 (2008).
pubmed: 18687659 pmcid: 2664998 doi: 10.1158/1535-7163.MCT-08-0182
Labriola, N. R., Mathiowitz, E. & Darling, E. M. Fabricating polyacrylamide microbeads by inverse emulsification to mimic the size and elasticity of living cells. Biomater. Sci. 5, 41–45 (2016).
pubmed: 27935612 pmcid: 5201106 doi: 10.1039/C6BM00692B
Solis, A. G. et al. Mechanosensation of cyclical force by PIEZO1 is essential for innate immunity. Nature 573, 69–74 (2019).
pubmed: 31435009 pmcid: 6939392 doi: 10.1038/s41586-019-1485-8
Maruyama, K., Nemoto, E. & Yamada, S. Mechanical regulation of macrophage function—cyclic tensile force inhibits NLRP3 inflammasome-dependent IL-1β secretion in murine macrophages. Inflamm. Regen. 39, 3 (2019).
pubmed: 30774738 pmcid: 6367847 doi: 10.1186/s41232-019-0092-2
Li, C., Hu, Y., Mayr, M. & Xu, Q. Cyclic strain stress-induced mitogen-activated protein kinase (MAPK) phosphatase 1 expression in vascular smooth muscle cells is regulated by Ras/Rac-MAPK pathways. J. Biol. Chem. 274, 25273–25280 (1999).
pubmed: 10464250 doi: 10.1074/jbc.274.36.25273
Stylianopoulos, T. et al. Coevolution of solid stress and interstitial fluid pressure in tumors during progression: implications for vascular collapse. Cancer Res. 73, 3833–3841 (2013).
pubmed: 23633490 pmcid: 3702668 doi: 10.1158/0008-5472.CAN-12-4521
Limjunyawong, N., Fallica, J., Horton, M. R. & Mitzner, W. Measurement of the pressure-volume curve in mouse lungs. J. Vis. Exp. 95, 52376 (2015).
Banerji, R. et al. Probing lung function at high spatiotemporal resolution using a novel crystal ribcage. Nat. Methods (in press).
Vinci, M. et al. Advances in establishment and analysis of three-dimensional tumor spheroid-based functional assays for target validation and drug evaluation. BMC Biol. 10, 29 (2012).
pubmed: 22439642 pmcid: 3349530 doi: 10.1186/1741-7007-10-29
Kodack, D. P. et al. The brain microenvironment mediates resistance in luminal breast cancer to PI3K inhibition through HER3 activation. Sci. Transl. Med. 9, eaal4682 (2017).
pubmed: 28539475 pmcid: 5917603 doi: 10.1126/scitranslmed.aal4682
Campas, O. et al. Quantifying cell-generated mechanical forces within living embryonic tissues. Nat. Methods 11, 183–189 (2014).
pubmed: 24317254 doi: 10.1038/nmeth.2761
Gross, B., Shelton, E., Gomez, C. & Campàs, O. STRESS, an automated geometrical characterization of deformable particles for in vivo measurements of cell and tissue mechanical stresses. Preprint at bioRxiv https://doi.org/10.1101/2021.03.26.437148 (2021).
Voutouri, C. & Stylianopoulos, T. Accumulation of mechanical forces in tumors is related to hyaluronan content and tissue stiffness. PLoS ONE 13, e0193801 (2018).
pubmed: 29561855 pmcid: 5862434 doi: 10.1371/journal.pone.0193801
Chauhan, V. P. et al. Reprogramming the microenvironment with tumor-selective angiotensin blockers enhances cancer immunotherapy. Proc. Natl Acad. Sci. USA 116, 10674–10680 (2019).
pubmed: 31040208 pmcid: 6561160 doi: 10.1073/pnas.1819889116
Martin, J. D., Seano, G. & Jain, R. K. Normalizing function of tumor vessels: progress, opportunities, and challenges. Annu. Rev. Physiol. 81, 505–534 (2019).
pubmed: 30742782 pmcid: 6571025 doi: 10.1146/annurev-physiol-020518-114700
Cleaver, O. & Melton, D. A. Endothelial signaling during development. Nat. Med. 9, 661–668 (2003).
pubmed: 12778164 doi: 10.1038/nm0603-661
Jain, R. K. Normalizing tumor microenvironment to treat cancer: bench to bedside to biomarkers. J. Clin. Oncol. 31, 2205–2218 (2013).
pubmed: 23669226 pmcid: 3731977 doi: 10.1200/JCO.2012.46.3653
Jain, R. K. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307, 58–62 (2005).
pubmed: 15637262 doi: 10.1126/science.1104819
Stylianopoulos, T., Munn, L. L. & Jain, R. K. Reengineering the physical microenvironment of tumors to improve drug delivery and efficacy: from mathematical modeling to bench to bedside. Trends Cancer 4, 292–319 (2018).
pubmed: 29606314 pmcid: 5930008 doi: 10.1016/j.trecan.2018.02.005
Nava, M. M. et al. Heterochromatin-driven nuclear softening protects the genome against mechanical stress-induced damage. Cell 181, 800–817 e822 (2020).
pubmed: 32302590 pmcid: 7237863 doi: 10.1016/j.cell.2020.03.052
Wirtz, D., Konstantopoulos, K. & Searson, P. C. The physics of cancer: the role of physical interactions and mechanical forces in metastasis. Nat. Rev. Cancer 11, 512–522 (2011).
pubmed: 21701513 pmcid: 3262453 doi: 10.1038/nrc3080
Lefrancais, E. et al. The lung is a site of platelet biogenesis and a reservoir for haematopoietic progenitors. Nature 544, 105–109 (2017).
pubmed: 28329764 pmcid: 5663284 doi: 10.1038/nature21706
Kedrin, D. et al. Intravital imaging of metastatic behavior through a mammary imaging window. Nat. Methods 5, 1019–1021 (2008).
pubmed: 18997781 pmcid: 2820719 doi: 10.1038/nmeth.1269
Pittet, M. J. & Weissleder, R. Intravital imaging. Cell 147, 983–991 (2011).
pubmed: 22118457 doi: 10.1016/j.cell.2011.11.004
Tse, J. R. & Engler, A. J. Preparation of hydrogel substrates with tunable mechanical properties. Curr. Protoc. Cell Biol. 10, 16 (2010).
Chen, I. X. et al. Blocking CXCR4 alleviates desmoplasia, increases T-lymphocyte infiltration, and improves immunotherapy in metastatic breast cancer. Proc. Natl Acad. Sci. USA 116, 4558–4566 (2019).
pubmed: 30700545 pmcid: 6410779 doi: 10.1073/pnas.1815515116
Muzumdar, M. D. et al. A global double-fluorescent Cre reporter mouse. Genesis 45, 593–605 (2007).
pubmed: 17868096 doi: 10.1002/dvg.20335
Vanderpool, R. R. & Chesler, N. C. Characterization of the isolated, ventilated, and instrumented mouse lung perfused with pulsatile flow. J. Vis. Exp. 50, 2690 (2011).
Kovac, B., Fehrenbach, J., Guillaume, L. & Weiss, P. FitEllipsoid: a fast supervised ellipsoid segmentation plugin. BMC Bioinf. 20, 142 (2019).
doi: 10.1186/s12859-019-2673-0
Moller, T. A fast triangle–triangle intersection test. J. Graph Tools 2, 25–30 (1997).
doi: 10.1080/10867651.1997.10487472
Danso, E. K., Julkunen, P. & Korhonen, R. K. Poisson’s ratio of bovine meniscus determined combining unconfined and confined compression. J. Biomech. 77, 233–237 (2018).
pubmed: 30055840 doi: 10.1016/j.jbiomech.2018.07.001
Tarasova, N. et al. The new approach to the preparation of polyacrylamide-based hydrogels: initiation of polymerization of acrylamide with 1,3-dimethylimidazolium (phosphonooxy-)oligosulphanide under drying aqueous solutions. Polymers 13, 1806 (2021).
pubmed: 34070935 pmcid: 8198900 doi: 10.3390/polym13111806
Cheng, G., Tse, J., Jain, R. K. & Munn, L. L. Micro-environmental mechanical stress controls tumor spheroid size and morphology by suppressing proliferation and inducing apoptosis in cancer cells. PLoS ONE 4, e4632 (2009).
pubmed: 19247489 pmcid: 2645686 doi: 10.1371/journal.pone.0004632
Hutter, J. L. & Bechhoefer, J. Calibration of atomic‐force microscope tips. Rev. Sci. Instrum. 64, 1868–1873 (1993).
doi: 10.1063/1.1143970
Roose, T. et al. Solid stress generated by spheroid growth estimated using a linear poroelasticity model. Microvasc. Res. 66, 204–212 (2003).
pubmed: 14609526 doi: 10.1016/S0026-2862(03)00057-8
Netti, P. A. et al. Role of extracellular matrix assembly in interstitial transport in solid tumors. Cancer Res. 60, 2497–2503 (2000).
pubmed: 10811131
Dimitriadis, E. K. et al. Determination of elastic moduli of thin layers of soft material using the atomic force microscope. Biophys. J. 82, 2798–2810 (2002).
pubmed: 11964265 pmcid: 1302067 doi: 10.1016/S0006-3495(02)75620-8

Auteurs

Sue Zhang (S)

Department of Biomedical Engineering, Boston University, Boston, MA, USA.

Gabrielle Grifno (G)

Department of Biomedical Engineering, Boston University, Boston, MA, USA.

Rachel Passaro (R)

Department of Biomedical Engineering, Boston University, Boston, MA, USA.

Kathryn Regan (K)

Department of Biomedical Engineering, Boston University, Boston, MA, USA.

Siyi Zheng (S)

Department of Biomedical Engineering, Boston University, Boston, MA, USA.

Muhamed Hadzipasic (M)

Department of Biomedical Engineering, Boston University, Boston, MA, USA.
Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA.

Rohin Banerji (R)

Department of Biomedical Engineering, Boston University, Boston, MA, USA.

Logan O'Connor (L)

Department of Biomedical Engineering, Boston University, Boston, MA, USA.

Vinson Chu (V)

Department of Biomedical Engineering, Boston University, Boston, MA, USA.

Sung Yeon Kim (SY)

Department of Biomedical Engineering, Boston University, Boston, MA, USA.

Jiarui Yang (J)

Department of Biomedical Engineering, Boston University, Boston, MA, USA.

Linzheng Shi (L)

Department of Biomedical Engineering, Boston University, Boston, MA, USA.

Kavon Karrobi (K)

Department of Biomedical Engineering, Boston University, Boston, MA, USA.

Darren Roblyer (D)

Department of Biomedical Engineering, Boston University, Boston, MA, USA.

Mark W Grinstaff (MW)

Department of Biomedical Engineering, Boston University, Boston, MA, USA.
Department of Chemistry, Boston University, Boston, MA, USA.

Hadi T Nia (HT)

Department of Biomedical Engineering, Boston University, Boston, MA, USA. htnia@bu.edu.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Humans Immune Checkpoint Inhibitors Lung Neoplasms Prognosis Inflammation
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice

Classifications MeSH