A first-in-class pan-lysyl oxidase inhibitor impairs stromal remodeling and enhances gemcitabine response and survival in pancreatic cancer.
Journal
Nature cancer
ISSN: 2662-1347
Titre abrégé: Nat Cancer
Pays: England
ID NLM: 101761119
Informations de publication
Date de publication:
09 2023
09 2023
Historique:
received:
28
09
2021
accepted:
07
07
2023
medline:
26
9
2023
pubmed:
29
8
2023
entrez:
28
8
2023
Statut:
ppublish
Résumé
The lysyl oxidase family represents a promising target in stromal targeting of solid tumors due to the importance of this family in crosslinking and stabilizing fibrillar collagens and its known role in tumor desmoplasia. Using small-molecule drug-design approaches, we generated and validated PXS-5505, a first-in-class highly selective and potent pan-lysyl oxidase inhibitor. We demonstrate in vitro and in vivo that pan-lysyl oxidase inhibition decreases chemotherapy-induced pancreatic tumor desmoplasia and stiffness, reduces cancer cell invasion and metastasis, improves tumor perfusion and enhances the efficacy of chemotherapy in the autochthonous genetically engineered KPC model, while also demonstrating antifibrotic effects in human patient-derived xenograft models of pancreatic cancer. PXS-5505 is orally bioavailable, safe and effective at inhibiting lysyl oxidase activity in tissues. Our findings present the rationale for progression of a pan-lysyl oxidase inhibitor aimed at eliciting a reduction in stromal matrix to potentiate chemotherapy in pancreatic ductal adenocarcinoma.
Identifiants
pubmed: 37640930
doi: 10.1038/s43018-023-00614-y
pii: 10.1038/s43018-023-00614-y
pmc: PMC10518255
doi:
Substances chimiques
Gemcitabine
0
Protein-Lysine 6-Oxidase
EC 1.4.3.13
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1326-1344Subventions
Organisme : Cancer Research UK
ID : 25813
Pays : United Kingdom
Investigateurs
Lorraine A Chantrill
(LA)
Angela Chou
(A)
Tanya Dwarte
(T)
Xanthe L Metcalf
(XL)
Gloria Jeong
(G)
Lara Kenyon
(L)
Nicola Waddell
(N)
John V Pearson
(JV)
Ann-Marie Patch
(AM)
Katia Nones
(K)
Felicity Newell
(F)
Pamela Mukhopadhyay
(P)
Venkateswar Addala
(V)
Stephen Kazakoff
(S)
Oliver Holmes
(O)
Conrad Leonard
(C)
Scott Wood
(S)
Oliver Hofmann
(O)
Jaswinder S Samra
(JS)
Nick Pavlakis
(N)
Jennifer Arena
(J)
Hilda A High
(HA)
Ray Asghari
(R)
Neil D Merrett
(ND)
Amitabha Das
(A)
Peter H Cosman
(PH)
Kasim Ismail
(K)
Alina Stoita
(A)
David Williams
(D)
Allan Spigellman
(A)
Duncan McLeo
(D)
Judy Kirk
(J)
James G Kench
(JG)
Peter Grimison
(P)
Charbel Sandroussi
(C)
Annabel Goodwin
(A)
R Scott Mead
(RS)
Katherine Tucker
(K)
Lesley Andrews
(L)
Michael Texler
(M)
Cindy Forrest
(C)
Mo Ballal
(M)
David Fletcher
(D)
Maria Beilin
(M)
Kynan Feeney
(K)
Krishna Epari
(K)
Sanjay Mukhedkar
(S)
Nikolajs Zeps
(N)
Nan Q Nguyen
(NQ)
Andrew R Ruszkiewicz
(AR)
Chris Worthley
(C)
John Chen
(J)
Mark E Brooke-Smith
(ME)
Virginia Papangelis
(V)
Andrew D Clouston
(AD)
Andrew P Barbour
(AP)
Thomas J O'Rourke
(TJ)
Jonathan W Fawcett
(JW)
Kellee Slater
(K)
Michael Hatzifotis
(M)
Peter Hodgkinson
(P)
Mehrdad Nikfarjam
(M)
James R Eshleman
(JR)
Ralph H Hruban
(RH)
Christopher L Wolfgang
(CL)
Aldo Scarpa
(A)
Rita T Lawlor
(RT)
Vincenzo Corbo
(V)
Claudio Bassi
(C)
Nigel B Jamieson
(NB)
David K Chang
(DK)
Stephan B Dreyer
(SB)
Lea Abdulkhalek
(L)
Tatjana Schmitz
(T)
Victoria Lee
(V)
Kym Pham Stewart
(KP)
Mehreen Arshi
(M)
Angela M Steinmann
(AM)
Informations de copyright
© 2023. The Author(s).
Références
Cox, T. R. The matrix in cancer. Nat. Rev. Cancer 21, 217–238 (2021).
pubmed: 33589810
doi: 10.1038/s41568-020-00329-7
Rahib, L. et al. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 74, 2913–2921 (2014).
pubmed: 24840647
doi: 10.1158/0008-5472.CAN-14-0155
Piersma, B., Hayward, M.-K. & Weaver, V. M. Fibrosis and cancer: a strained relationship. Biochim. Biophys. Acta Rev. Cancer 1873, 188356 (2020).
pubmed: 32147542
pmcid: 7733542
doi: 10.1016/j.bbcan.2020.188356
Biffi, G. & Tuveson, D. A. Diversity and biology of cancer-associated fibroblasts. Physiol. Rev. 101, 147–176 (2021).
pubmed: 32466724
doi: 10.1152/physrev.00048.2019
Hemmings, C. & Connor, S. Pathological assessment of tumour regression following neoadjuvant therapy in pancreatic carcinoma. Pathology 52, 621–626 (2020).
pubmed: 32800331
doi: 10.1016/j.pathol.2020.07.001
Pereira, B. A. et al. CAF subpopulations: A new reservoir of stromal targets in pancreatic cancer. Trends Cancer 5, 724–741 (2019).
pubmed: 31735290
doi: 10.1016/j.trecan.2019.09.010
Cox, T. R. & Erler, J. T. Fibrosis and cancer: partners in crime or opposing forces? Trends Cancer 2, 279–282 (2016).
pubmed: 28741525
doi: 10.1016/j.trecan.2016.05.004
Neesse, A. et al. Stromal biology and therapy in pancreatic cancer: ready for clinical translation? Gut 68, 159–171 (2019).
pubmed: 30177543
doi: 10.1136/gutjnl-2018-316451
Rhim, A. D. et al. Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell 25, 735–747 (2014).
pubmed: 24856585
pmcid: 4096698
doi: 10.1016/j.ccr.2014.04.021
Özdemir, B. C. et al. Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell 25, 719–734 (2014).
pubmed: 24856586
pmcid: 4180632
doi: 10.1016/j.ccr.2014.04.005
Vennin, C. et al. Reshaping the tumor stroma for treatment of pancreatic cancer. Gastroenterology 154, 820–838 (2018).
pubmed: 29287624
doi: 10.1053/j.gastro.2017.11.280
Chitty, J. L., Setargew, Y. F. I. & Cox, T. R. Targeting the lysyl oxidases in tumour desmoplasia. Biochem. Soc. Trans. 47, 1661–1678 (2019).
pubmed: 31754702
doi: 10.1042/BST20190098
Barker, H. E., Cox, T. R. & Erler, J. T. The rationale for targeting the LOX family in cancer. Nat. Rev. Cancer 12, 540–552 (2012).
pubmed: 22810810
doi: 10.1038/nrc3319
Chopra, V., Sangarappillai, R. M., Romero‐Canelón, I. & Jones, A. M. Lysyl oxidase like‐2 (LOXL2): an emerging oncology target. Adv. Therap. 3, 1900119 (2020).
doi: 10.1002/adtp.201900119
Cox, T. R. et al. LOX-mediated collagen crosslinking is responsible for fibrosis-enhanced metastasis. Cancer Res. 73, 1721–1732 (2013).
pubmed: 23345161
pmcid: 3672851
doi: 10.1158/0008-5472.CAN-12-2233
Miller, B. W. et al. Targeting the LOX/hypoxia axis reverses many of the features that make pancreatic cancer deadly: inhibition of LOX abrogates metastasis and enhances drug efficacy. EMBO Mol. Med. 7, 1063–1076 (2015).
pubmed: 26077591
pmcid: 4551344
doi: 10.15252/emmm.201404827
Benson, A. B. et al. A phase II randomized, double-blind, placebo-controlled study of simtuzumab or placebo in combination with gemcitabine for the first-line treatment of pancreatic adenocarcinoma. Oncologist 22, 241 (2017).
pubmed: 28246206
pmcid: 5344644
doi: 10.1634/theoncologist.2017-0024
Hecht, J. R. et al. A phase II, randomized, double-blind, placebo-controlled study of simtuzumab in combination with FOLFIRI for the second-line treatment of metastatic KRAS mutant colorectal adenocarcinoma. Oncologist 22, 243 (2017).
pubmed: 28246207
pmcid: 5344646
doi: 10.1634/theoncologist.2016-0479
Barry-Hamilton, V. et al. Allosteric inhibition of lysyl oxidase-like-2 impedes the development of a pathologic microenvironment. Nat. Med. 16, 1009–1017 (2010).
pubmed: 20818376
doi: 10.1038/nm.2208
Yao, Y. et al. Pan-lysyl oxidase inhibitor PXS-5505 ameliorates multiple-organ fibrosis by inhibiting collagen crosslinks in rodent models of systemic sclerosis. Int. J. Mol. Sci. 23, 5533 (2022).
pubmed: 35628342
pmcid: 9146019
doi: 10.3390/ijms23105533
Biankin, A. V. et al. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature 491, 399–405 (2012).
pubmed: 23103869
pmcid: 3530898
doi: 10.1038/nature11547
Rissin, D. M. et al. Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations. Nat. Biotechnol. 28, 595–599 (2010).
pubmed: 20495550
pmcid: 2919230
doi: 10.1038/nbt.1641
Raghu, G. et al. Efficacy of simtuzumab versus placebo in patients with idiopathic pulmonary fibrosis: a randomised, double-blind, controlled, phase 2 trial. Lancet Respir. Med. 5, 22–32 (2017).
pubmed: 27939076
doi: 10.1016/S2213-2600(16)30421-0
Gopinathan, A., Morton, J. P., Jodrell, D. I. & Sansom, O. J. GEMMs as preclinical models for testing pancreatic cancer therapies. Dis. Model. Mech. 8, 1185–1200 (2015).
pubmed: 26438692
pmcid: 4610236
doi: 10.1242/dmm.021055
Neesse, A., Algül, H., Tuveson, D. A. & Gress, T. M. Stromal biology and therapy in pancreatic cancer: a changing paradigm. Gut 64, 1476–1484 (2015).
pubmed: 25994217
doi: 10.1136/gutjnl-2015-309304
Nielsen, S. R. et al. Corrigendum: macrophage-secreted granulin supports pancreatic cancer metastasis by inducing liver fibrosis. Nat. Cell Biol. 18, 822 (2016).
pubmed: 27350447
doi: 10.1038/ncb3377
Sahai, E. et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat. Rev. Cancer 20, 174–186 (2020).
pubmed: 31980749
pmcid: 7046529
doi: 10.1038/s41568-019-0238-1
Vennin, C. et al. CAF hierarchy driven by pancreatic cancer cell p53-status creates a pro-metastatic and chemoresistant environment via perlecan. Nat. Commun. 10, 3637 (2019).
pubmed: 31406163
pmcid: 6691013
doi: 10.1038/s41467-019-10968-6
Keiser, H. R. & Sjoerdsma, A. Studies on β-aminopropionitrile in patients with scleroderma. Clin. Pharmacol. Ther. 8, 593–602 (1967).
pubmed: 4951976
doi: 10.1002/cpt196784593
Aslam, T. et al. Optical molecular imaging of lysyl oxidase activity – detection of active fibrogenesis in human lung tissue. Chem. Sci. 6, 4946–4953 (2015).
pubmed: 30155003
pmcid: 6088439
doi: 10.1039/C5SC01258A
Findlay, A. D. et al. Identification and optimization of mechanism-based fluoroallylamine inhibitors of lysyl oxidase-like 2/3. J. Med. Chem. 62, 9874–9889 (2019).
pubmed: 31580073
doi: 10.1021/acs.jmedchem.9b01283
Holt, A. & Palcic, M. M. A peroxidase-coupled continuous absorbance plate-reader assay for flavin monoamine oxidases, copper-containing amine oxidases and related enzymes. Nat. Protoc. 1, 2498–2505 (2006).
pubmed: 17406497
doi: 10.1038/nprot.2006.402
Sharbeen, G. et al. Cancer-associated fibroblasts in pancreatic ductal adenocarcinoma determine response to SLC7A11 inhibition. Cancer Res. 81, 3461–3479 (2021).
pubmed: 33980655
doi: 10.1158/0008-5472.CAN-20-2496
Vennin, C. et al. Transient tissue priming via ROCK inhibition uncouples pancreatic cancer progression, sensitivity to chemotherapy, and metastasis. Sci. Transl. Med. 9, eaai8504 (2017).
pubmed: 28381539
pmcid: 5777504
doi: 10.1126/scitranslmed.aai8504
Chang, J. et al. Pre-clinical evaluation of small molecule LOXL2 inhibitors in breast cancer. Oncotarget 8, 26066–26078 (2017).
pubmed: 28199967
pmcid: 5432238
doi: 10.18632/oncotarget.15257
Waddell, N. et al. Whole genomes redefine the mutational landscape of pancreatic cancer. Nature 518, 495–501 (2015).
pubmed: 25719666
pmcid: 4523082
doi: 10.1038/nature14169
Dosch, A. R. et al. Targeting tumor-stromal IL6/STAT3 signaling through IL1 receptor inhibition in pancreatic cancer. Mol. Cancer Ther. 20, 2280–2290 (2021).
pubmed: 34518296
pmcid: 8571047
doi: 10.1158/1535-7163.MCT-21-0083
Lankadasari, M. B. et al. Targeting S1PR1/STAT3 loop abrogates desmoplasia and chemosensitizes pancreatic cancer to gemcitabine. Theranostics 8, 3824–3840 (2018).
pubmed: 30083262
pmcid: 6071521
doi: 10.7150/thno.25308
Long, K. B. et al. IL6 receptor blockade enhances chemotherapy efficacy in pancreatic ductal adenocarcinoma. Mol. Cancer Ther. 16, 1898–1908 (2017).
pubmed: 28611107
pmcid: 5587413
doi: 10.1158/1535-7163.MCT-16-0899
Gong, J. et al. Downregulation of STAT3/NF-κB potentiates gemcitabine activity in pancreatic cancer cells. Mol. Carcinog. 56, 402–411 (2017).
pubmed: 27208550
doi: 10.1002/mc.22503
Chen, Y. et al. Lysyl hydroxylase 2 induces a collagen cross-link switch in tumor stroma. J. Clin. Invest. 125, 1147–1162 (2015).
pubmed: 25664850
pmcid: 4362236
doi: 10.1172/JCI74725
Sun, L. et al. IGFBP2 promotes tumor progression by inducing alternative polarization of macrophages in pancreatic ductal adenocarcinoma through the STAT3 pathway. Cancer Lett. 500, 132–146 (2021).
pubmed: 33309859
doi: 10.1016/j.canlet.2020.12.008
Morton, J. P. et al. Mutant p53 drives metastasis and overcomes growth arrest/senescence in pancreatic cancer. Proc. Natl Acad. Sci. USA 107, 246–251 (2010).
pubmed: 20018721
doi: 10.1073/pnas.0908428107
Hingorani, S. R. et al. Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell 7, 469–483 (2005).
pubmed: 15894267
doi: 10.1016/j.ccr.2005.04.023
Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin. 70, 7–30 (2020).
pubmed: 31912902
doi: 10.3322/caac.21590
Isaji, S. et al. International consensus on definition and criteria of borderline resectable pancreatic ductal adenocarcinoma 2017. Pancreatology 18, 2–11 (2018).
pubmed: 29191513
doi: 10.1016/j.pan.2017.11.011
Jiang, H. et al. Pancreatic ductal adenocarcinoma progression is restrained by stromal matrix. J. Clin. Invest. 130, 4704–4709 (2020).
pubmed: 32749238
pmcid: 7456216
doi: 10.1172/JCI136760
Le Calvé, B. et al. Lysyl oxidase family activity promotes resistance of pancreatic ductal adenocarcinoma to chemotherapy by limiting the intratumoral anticancer drug distribution. Oncotarget 7, 32100–32112 (2016).
pubmed: 27050073
pmcid: 5078000
doi: 10.18632/oncotarget.8527
Wang, S. et al. CCM3 is a gatekeeper in focal adhesions regulating mechanotransduction and YAP/TAZ signalling. Nat. Cell Biol. 23, 758–770 (2021).
pubmed: 34226698
doi: 10.1038/s41556-021-00702-0
Vonlaufen, A. et al. Pancreatic stellate cells: partners in crime with pancreatic cancer cells. Cancer Res. 68, 2085–2093 (2008).
pubmed: 18381413
doi: 10.1158/0008-5472.CAN-07-2477
Chitty, J. L. et al. The Mini-Organo: a rapid high-throughput 3D coculture organotypic assay for oncology screening and drug development. Cancer Rep. 3, e1209 (2020).
doi: 10.1002/cnr2.1209
Conway, J. R. W. et al. Three-dimensional organotypic matrices from alternative collagen sources as pre-clinical models for cell biology. Sci. Rep. 7, 16887 (2017).
pubmed: 29203823
pmcid: 5715059
doi: 10.1038/s41598-017-17177-5
Morton, J. P. et al. Dasatinib inhibits the development of metastases in a mouse model of pancreatic ductal adenocarcinoma. Gastroenterology 139, 292–303 (2010).
pubmed: 20303350
doi: 10.1053/j.gastro.2010.03.034
Erler, J. T. et al. Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell 15, 35–44 (2009).
pubmed: 19111879
pmcid: 3050620
doi: 10.1016/j.ccr.2008.11.012
Baker, A.-M. et al. The role of lysyl oxidase in SRC-dependent proliferation and metastasis of colorectal cancer. J. Natl Cancer Inst. 103, 407–424 (2011).
pubmed: 21282564
doi: 10.1093/jnci/djq569
Baker, A. M., Bird, D., Lang, G., Cox, T. R. & Erler, J. T. Lysyl oxidase enzymatic function increases stiffness to drive colorectal cancer progression through FAK. Oncogene 32, 1863–1868 (2013).
pubmed: 22641216
doi: 10.1038/onc.2012.202
Bankhead, P. et al. QuPath: open source software for digital pathology image analysis. Sci. Rep. 7, 16878 (2017).
pubmed: 29203879
pmcid: 5715110
doi: 10.1038/s41598-017-17204-5
Mayorca-Guiliani, A. E. et al. ISDoT: in situ decellularization of tissues for high-resolution imaging and proteomic analysis of native extracellular matrix. Nat. Med. 23, 890–898 (2017).
pubmed: 28604702
doi: 10.1038/nm.4352
Trackman, P. C. & Bais, M. V. Measurement of lysyl oxidase activity from small tissue samples and cell cultures. Methods Cell Biol. 143, 147–156 (2018).
pubmed: 29310775
doi: 10.1016/bs.mcb.2017.08.009
Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-seq data with or without a reference genome. BMC Bioinform. 12, 323 (2011).
doi: 10.1186/1471-2105-12-323
Joshi, A., Zahoor, A. & Buson, A. Measurement of collagen cross-links from tissue samples by mass spectrometry. Methods Mol. Biol. 1944, 79–93 (2019).
pubmed: 30840236
doi: 10.1007/978-1-4939-9095-5_6