Severe infections caused by difficult-to-treat Gram-negative bacteria.


Journal

Current opinion in critical care
ISSN: 1531-7072
Titre abrégé: Curr Opin Crit Care
Pays: United States
ID NLM: 9504454

Informations de publication

Date de publication:
01 10 2023
Historique:
medline: 11 9 2023
pubmed: 29 8 2023
entrez: 29 8 2023
Statut: ppublish

Résumé

Antimicrobial resistance (AMR) in Gram-negative bacteria (GNB) poses a significant global health concern, contributing to increased infections, mortality rates, and healthcare costs. This review discusses the main clinical manifestations, therapeutic options, and recent findings in managing antibiotic-resistant GNB, with a focus on difficult-to-treat infections. Difficult-to-treat resistance (DTR) is a novel classification that identifies GNB exhibiting intermediate or resistant phenotypes to first-line agents in the carbapenem, beta-lactam, and fluoroquinolone categories. The main pathogens implicated in severe infections include DTR Enterobacterales, DTR Pseudomonas aeruginosa , and DTR Acinetobacter baumannii. Although the clinical implications of DTR strains are still under investigation, certain studies have linked them to prolonged hospital stays and poor patient outcomes. Severe infections caused by DTR-GNB pose a formidable challenge for healthcare providers and represent a growing global health issue. The proper administration and optimization of novel antibiotics at our disposal are of paramount importance for combating bacterial resistance and improving patient prognosis.

Identifiants

pubmed: 37641512
doi: 10.1097/MCC.0000000000001074
pii: 00075198-990000000-00106
doi:

Substances chimiques

Anti-Bacterial Agents 0
Carbapenems 0

Types de publication

Review Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

438-445

Informations de copyright

Copyright © 2023 Wolters Kluwer Health, Inc. All rights reserved.

Références

US Centers for Disease Control and Prevention. Antibiotic resistance threats in the United States, 2019. Available at: https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf . [Accessed 20 February 2023]
Babiker A, Clarke LG, Saul M, et al. Changing epidemiology and decreased mortality associated with carbapenem-resistant Gram-negative bacteria, 2000–2017. Clin Infect Dis 2021; 73:e4521–e4530.
Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 2022; 399:629–655.
2019 AR Threats Report. Available at: https://www.cdc.gov/drugresistance/biggest-threats.html . [Accessed 20 February 2023]
Magiorakos A-P, Srinivasan A, Carey RB, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 2012; 18:268–281.
Burnham JP, Lane MA, Kollef MH. Impact of sepsis classification and multidrug-resistance status on outcome among patients treated with appropriate therapy. Crit Care Med 2015; 43:1580–1586.
Dimopoulos G, Koulenti D, Tabah A, et al. Bloodstream infections in ICU with increased resistance: epidemiology and outcomes. Minerva Anestesiol 2015; 81:405–418.
Kadri SS, Adjemian J, Lai YL, et al. National Institutes of Health Antimicrobial Resistance Outcomes Research Initiative (NIH–ARORI). Difficult-to-treat resistance in gram-negative bacteremia at 173 US hospitals: retrospective cohort analysis of prevalence, predictors, and outcome of resistance to all first-line agents. Clin Infect Dis 2018; 67:1803–1814.
Vincent J-L, Sakr Y, Singer M, et al. EPIC III Investigators. Prevalence and outcomes of infection among patients in intensive care units in 2017. JAMA 2020; 323:1478–1487.
Tabah A, Buetti N, Staiquly Q, et al. EUROBACT-2 Study Group, ESICM, ESCMID ESGCIP and the OUTCOMEREA Network. Epidemiology and outcomes of hospital-acquired bloodstream infections in intensive care unit patients: the EUROBACT-2 international cohort study. Intensive Care Med 2023; 49:178–190.
Torres A, Niederman MS, Chastre J, et al. International ERS/ESICM/ESCMID/ALAT guidelines for the management of hospital-acquired pneumonia and ventilator-associated pneumonia: Guidelines for the management of hospital-acquired pneumonia (HAP)/ventilator-associated pneumonia (VAP) of the European Respiratory Society (ERS), European Society of Intensive Care Medicine (ESICM), European Society of Clinical Microbiology and Infectious Diseases (ESCMID) and Asociación Latinoamericana del Tórax (ALAT). Eur Respir J 2017; 50:1700582.
Giuliano KK, Baker D, Quinn B. The epidemiology of nonventilator hospital-acquired pneumonia in the United States. Am J Infect Control 2018; 46:322–327.
Ibn Saied W, Mourvillier B, Cohen Y, et al. OUTCOMEREA Study Group. A comparison of the mortality risk associated with ventilator-acquired bacterial pneumonia and nonventilator ICU-acquired bacterial pneumonia. Crit Care Med 2019; 47:345–352.
Koulenti D, Tsigou E, Rello J. Nosocomial pneumonia in 27 ICUs in Europe: perspectives from the EU-VAP/CAP study. Eur J Clin Microbiol Infect Dis 2017; 36:1999–2006.
Talbot GH, Das A, Cush S, et al. Evidence-based study design for hospital-acquired bacterial pneumonia and ventilator-associated bacterial pneumonia. J Infect Dis 2019; 219:1536–1544.
Zaragoza R, Vidal-Cortés P, Aguilar G, et al. Update of the treatment of nosocomial pneumonia in the ICU. Crit Care 2020; 24:383.
Lakbar I, Medam S, Ronflé R, et al. REA RAISIN Study Group. Association between mortality and highly antimicrobial-resistant bacteria in intensive care unit-acquired pneumonia. Sci Rep 2021; 11:16497.
Timsit J-F, Ruppé E, Barbier F, et al. Bloodstream infections in critically ill patients: an expert statement. Intensive Care Med 2020; 46:266–284.
Laupland KB, Church DL. Population-based epidemiology and microbiology of community-onset bloodstream infections. Clin Microbiol Rev 2014; 27:647–664.
Pascale R, Corcione S, Bussini L, et al. Nonfermentative Gram-negative bloodstream infection in northern Italy: a multicenter cohort study. BMC Infect Dis 2021; 21:806.
Huh K, Chung DR, Ha YE, et al. Korean Antimicrobial Resistance Surveillance Network (KARS-Net) Investigators. Impact of difficult-to-treat resistance in gram-negative bacteremia on mortality: retrospective analysis of nationwide surveillance data. Clin Infect Dis 2020; 71:e487–e496.
Bassetti M, Eckmann C, Giacobbe DR, et al. Postoperative abdominal infections: epidemiology, operational definitions, and outcomes. Intensive Care Med 2020; 46:163–172.
Blot S, Antonelli M, Arvaniti K, et al. Epidemiology of intra-abdominal infection and sepsis in critically ill patients: ‘AbSeS’, a multinational observational cohort study and ESICM Trials Group Project. Intensive Care Med 2019; 45:1703–1717.
Montravers P, Dufour G, Guglielminotti J, et al. Dynamic changes of microbial flora and therapeutic consequences in persistent peritonitis. Crit Care 2015; 19:70.
Lin T-L, Chang P-H, Chen I-L, et al. Risk factors and mortality associated with multidrug-resistant Gram-negative bacterial infection in adult patients following abdominal surgery. J Hosp Infect 2022; 119:22–32.
Alexiou VG, Michalopoulos A, Makris GC, et al. Multidrug-resistant gram-negative bacterial infection in surgical patients hospitalized in the ICU: a cohort study. Eur J Clin Microbiol Infect Dis 2012; 31:557–566.
Hasanin A, Eladawy A, Mohamed H, et al. Prevalence of extensively drug-resistant gram negative bacilli in surgical intensive care in Egypt. Pan Afr Med J 2014; 19:177.
De Waele J, Lipman J, Sakr Y, et al. EPIC II Investigators. Abdominal infections in the intensive care unit: characteristics, treatment and determinants of outcome. BMC Infect Dis 2014; 14:420.
van de Groep K, Verhoeff TL, Verboom DM, et al. MARS consortium: epidemiology and outcomes of source control procedures in critically ill patients with intra-abdominal infection. J Crit Care 2019; 52:258–264.
Arvaniti K, Dimopoulos G, Antonelli M, et al. Abdominal Sepsis Study (AbSeS) Group on behalf of the Trials Group of the European Society of Intensive Care Medicine. Epidemiology and age-related mortality in critically ill patients with intra-abdominal infection or sepsis: an international cohort study. Int J Antimicrob Agents 2022; 60:106591.
Nicolle LE. Urinary tract infection. Crit Care Clin 2013; 29:699–715.
Saran S, Rao NS, Azim A. Diagnosing catheter-associated urinary tract infection in critically ill patients: do the guidelines help? Indian J Crit Care Med 2018; 22:357–360.
Gomila A, Carratalà J, Eliakim-Raz N, et al. RESCUING Study Group and Study Sites. Clinical outcomes of hospitalised patients with catheter-associated urinary tract infection in countries with a high rate of multidrug-resistance: the COMBACTE-MAGNET RESCUING study. Antimicrob Resist Infect Control 2019; 8:198.
Bassetti M, Rello J, Blasi F, et al. Systematic review of the impact of appropriate versus inappropriate initial antibiotic therapy on outcomes of patients with severe bacterial infections. Int J Antimicrob Agents 2020; 56:106184.
Corcione S, De Benedetto I, Shbaklo N, et al. Ten years of KPC-Kp bloodstream infections experience: impact of early appropriate empirical therapy on mortality. Biomedicines 2022; 10:3268.
Falcone M, Bassetti M, Tiseo G, et al. Time to appropriate antibiotic therapy is a predictor of outcome in patients with bloodstream infection caused by KPC-producing Klebsiella pneumoniae. Crit Care 2020; 24:29.
Martinez-Nadal G, Puerta-Alcalde P, Gudiol C, et al. Inappropriate empirical antibiotic treatment in high-risk neutropenic patients with bacteremia in the era of multidrug resistance. Clin Infect Dis 2020; 70:1068–1074.
Tsuji BT, Pogue JM, Zavascki AP, et al. International Consensus Guidelines for the Optimal Use of the Polymyxins: Endorsed by the American College of Clinical Pharmacy (ACCP), European Society of Clinical Microbiology and Infectious Diseases (ESCMID), Infectious Diseases Society of America (IDSA), International Society for Antiinfective Pharmacology (ISAP), Society of Critical Care Medicine (SCCM), and Society of Infectious Diseases Pharmacists (SIDP). Pharmacotherapy 2019; 39:10–39.
Karaiskos I, Lagou S, Pontikis K, et al. The ‘Old’ and the ‘New’ antibiotics for MDR gram-negative pathogens: for whom, when, and how. Front Public Health 2019; 7:151.
Bassetti M, Falletta A, Cenderello G, et al. Safety evaluation of current therapies for high-risk severely ill patients with carbapenem-resistant infections. Expert Opin Drug Saf 2022; 21:487–498.
Bassetti M, Carnelutti A, Peghin M. Patient specific risk stratification for antimicrobial resistance and possible treatment strategies in gram-negative bacterial infections. Expert Rev Anti Infect Ther 2017; 15:55–65.
Ambler RP. The structure of beta-lactamases. Philos Trans R Soc Lond B Biol Sci 1980; 289:321–331.
Tiseo G, Brigante G, Giacobbe DR, et al. Diagnosis and management of infections caused by multidrug-resistant bacteria: guideline endorsed by the Italian Society of Infection and Tropical Diseases (SIMIT), the Italian Society of Anti-Infective Therapy (SITA), the Italian Group for Antimicrobial Stewardship (GISA), the Italian Association of Clinical Microbiologists (AMCLI) and the Italian Society of Microbiology (SIM). Int J Antimicrob Agents 2022; 60:106611.
Tamma PD, Aitken SL, Bonomo RA, et al. Infectious Diseases Society of America 2022 Guidance on the treatment of extended-spectrum β-lactamase producing Enterobacterales (ESBL-E), carbapenem-resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with difficult-to-treat resistance (DTR-P. aeruginosa). Clin Infect Dis 2022; 75:187–212.
Paul M, Carrara E, Retamar P, et al. European Society of Clinical Microbiology and Infectious Diseases (ESCMID) guidelines for the treatment of infections caused by multidrug-resistant Gram-negative bacilli (endorsed by European society of intensive care medicine). Clin Microbiol Infect 2022; 28:521–547.
van Duin D, Lok JJ, Earley M, et al. Antibacterial Resistance Leadership Group. Colistin versus ceftazidime-avibactam in the treatment of infections due to carbapenem-resistant Enterobacteriaceae. Clin Infect Dis 2018; 66:163–171.
Shields RK, Nguyen MH, Chen L, et al. Ceftazidime-avibactam is superior to other treatment regimens against carbapenem-resistant Klebsiella pneumoniae bacteremia. Antimicrob Agents Chemother 2017; 61:e00883-17.
Castón JJ, Lacort-Peralta I, Martín-Dávila P, et al. Clinical efficacy of ceftazidime/avibactam versus other active agents for the treatment of bacteremia due to carbapenemase-producing Enterobacteriaceae in hematologic patients. Int J Infect Dis 2017; 59:118–123.
Tumbarello M, Trecarichi EM, Corona A, et al. Efficacy of ceftazidime-avibactam salvage therapy in patients with infections caused by Klebsiella pneumoniae carbapenemase-producing K. pneumoniae. Clin Infect Dis 2019; 68:355–364.
Karaiskos I, Daikos GL, Gkoufa A, et al. Hellenic Ceftazidime/Avibactam Registry Study Group. Ceftazidime/avibactam in the era of carbapenemase-producing Klebsiella pneumoniae: experience from a national registry study. J Antimicrob Chemother 2021; 76:775–783.
Wunderink RG, Giamarellos-Bourboulis EJ, Rahav G, et al. Effect and safety of meropenem-vaborbactam versus best-available therapy in patients with carbapenem-resistant Enterobacteriaceae infections: the TANGO II Randomized Clinical Trial. Infect Dis Ther 2018; 7:439–455.
Ackley R, Roshdy D, Meredith J, et al. Meropenem-vaborbactam versus ceftazidime-avibactam for treatment of carbapenem-resistant Enterobacteriaceae infections. Antimicrob Agents Chemother 2020; 64:e02313–e2319.
Wenzler E, Scoble PJ. An appraisal of the pharmacokinetic and pharmacodynamic properties of meropenem-vaborbactam. Infect Dis Ther 2020; 9:769–784.
Tiseo G, Falcone M, Leonildi A, et al. Meropenem-vaborbactam as salvage therapy for ceftazidime-avibactam-, cefiderocol-resistant st-512 klebsiella pneumoniae-producing KPC-31, a D179Y variant of KPC-3. Open Forum Infect Dis 2021; 8:ofab141.
Lob SH, Karlowsky JA, Young K, et al. In vitro activity of imipenem-relebactam against resistant phenotypes of Enterobacteriaceae and Pseudomonas aeruginosa isolated from intraabdominal and urinary tract infection samples - SMART Surveillance Europe 2015–2017. J Med Microbiol 2020; 69:207–217.
Hernández-García M, García-Castillo M, Bou G, et al. Imipenem-relebactam susceptibility in Enterobacterales isolates recovered from ICU patients from Spain and Portugal (SUPERIOR and STEP Studies). Microbiol Spectr 2022; 10:e0292722.
Bail L, Ito CAS, Arend LNVS, et al. Activity of imipenem-relebactam and ceftolozane-tazobactam against carbapenem-resistant Pseudomonas aeruginosa and KPC-producing Enterobacterales. Diagn Microbiol Infect Dis 2022; 102:115568.
Motsch J, Murta de Oliveira C, Stus V, et al. RESTORE-IMI 1: a multicenter, randomized, double-blind trial comparing efficacy and safety of imipenem/relebactam vs colistin plus imipenem in patients with imipenem-nonsusceptible bacterial infections. Clin Infect Dis 2020; 70:1799–1808.
Rebold N, Morrisette T, Lagnf AM, et al. Early multicenter experience with imipenem-cilastatin-relebactam for multidrug-resistant gram-negative infections. Open Forum Infect Dis 2021; 8:ofab554.
Timsit JF, Paul M, Shields RK, et al. Cefiderocol for the treatment of infections due to metallo-B-lactamase-producing pathogens in the CREDIBLE-CR and APEKS-NP phase 3 randomized studies. Clin Infect Dis 2022; 75:1081–1084.
Nurjadi D, Kocer K, Chanthalangsy Q, et al. New Delhi metallo-beta-lactamase facilitates the emergence of cefiderocol resistance in Enterobacter cloacae. Antimicrob Agents Chemother 2022; 66:e0201121.
Falcone M, Tiseo G. Cefiderocol for the treatment of metallo-β-lactamases producing gram-negative bacilli: lights and shadows from the literature. Clin Infect Dis 2022; 75:1085–1087.
Longshaw C, Manissero D, Tsuji M, et al. In vitro activity of the siderophore cephalosporin, cefiderocol, against molecularly characterized, carbapenem-nonsusceptible Gram-negative bacteria from Europe. JAC Antimicrob Resist 2020; 2:dlaa060.
Shaw E, Rombauts A, Tubau F, et al. Clinical outcomes after combination treatment with ceftazidime/avibactam and aztreonam for NDM-1/OXA-48/CTX-M-15-producing Klebsiella pneumoniae infection. J Antimicrob Chemother 2018; 73:1104–1106.
Falcone M, Daikos GL, Tiseo G, et al. Efficacy of ceftazidime-avibactam plus aztreonam in patients with bloodstream infections caused by metallo-β-lactamase-producing Enterobacterales. Clin Infect Dis 2021; 72:1871–1878.
Maraki S, Mavromanolaki VE, Moraitis P, et al. Ceftazidime-avibactam, meropenen-vaborbactam, and imipenem-relebactam in combination with aztreonam against multidrug-resistant, metallo-β-lactamase-producing Klebsiella pneumoniae. Eur J Clin Microbiol Infect Dis 2021; 40:1755–1759.
Biagi M, Lee M, Wu T, et al. Aztreonam in combination with imipenem-relebactam against clinical and isogenic strains of serine and metallo-β-lactamase-producing Enterobacterales. Diagn Microbiol Infect Dis 2022; 103:115674.
Solomkin J, Evans D, Slepavicius A, et al. Assessing the efficacy and safety of eravacycline vs ertapenem in complicated intra-abdominal infections in the Investigating Gram-Negative Infections Treated With Eravacycline (IGNITE 1) Trial: a randomized clinical trial. JAMA Surg 2017; 152:224–232.
Solomkin JS, Gardovskis J, Lawrence K, et al. IGNITE4: results of a phase 3, randomized, multicenter, prospective trial of eravacycline vs meropenem in the treatment of complicated intraabdominal infections. Clin Infect Dis 2019; 69:921–929.
Lister PD, Wolter DJ, Hanson ND. Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev 2009; 22:582–610.
Wolter DJ, Lister PD. Mechanisms of β-lactam resistance among Pseudomonas aeruginosa. Curr Pharm Des 2013; 19:209–222.
Yoon E-J, Jeong SH. Mobile carbapenemase genes in Pseudomonas aeruginosa. Front Microbiol 2021; 12:614058.
Dortet L, Poirel L, Nordmann P. Worldwide dissemination of the NDM-type carbapenemases in Gram-negative bacteria. Biomed Res Int 2014; 2014:249856.
Kollef MH, Nováček M, Kivistik Ü, et al. Ceftolozane-tazobactam versus meropenem for treatment of nosocomial pneumonia (ASPECT-NP): a randomised, controlled, double-blind, phase 3, noninferiority trial. Lancet Infect Dis 2019; 19:1299–1311.
Gallagher JC, Satlin MJ, Elabor A, et al. Ceftolozane-tazobactam for the treatment of multidrug-resistant Pseudomonas aeruginosa infections: a multicenter study. Open Forum Infect Dis 2018; 5:ofy280.
Escolà-Vergé L, Pigrau C, Los-Arcos I, et al. Ceftolozane/tazobactam for the treatment of XDR Pseudomonas aeruginosa infections. Infection 2018; 46:461–468.
Munita JM, Aitken SL, Miller WR, et al. Multicenter evaluation of ceftolozane/tazobactam for serious infections caused by carbapenem-resistant Pseudomonas aeruginosa. Clin Infect Dis 2017; 65:158–161.
Xipell M, Paredes S, Fresco L, et al. Clinical experience with ceftolozane/tazobactam in patients with serious infections due to resistant Pseudomonas aeruginosa. J Glob Antimicrob Resist 2018; 13:165–170.
Pogue JM, Kaye KS, Veve MP, et al. Ceftolozane/tazobactam vs polymyxin or aminoglycoside-based regimens for the treatment of drug-resistant Pseudomonas aeruginosa. Clin Infect Dis 2020; 71:304–310.
Vena A, Giacobbe DR, Mussini C, et al. Ceftabuse Study Group. Clinical efficacy of ceftolozane-tazobactam versus other active agents for the treatment of bacteremia and nosocomial pneumonia due to drug-resistant Pseudomonas aeruginosa. Clin Infect Dis 2020; 71:1799–1801.
Bassetti M, Castaldo N, Cattelan A, et al. CEFTABUSE Study Group. Ceftolozane/tazobactam for the treatment of serious Pseudomonas aeruginosa infections: a multicentre nationwide clinical experience. Int J Antimicrob Agents 2019; 53:408–415.
Balandin B, Ballesteros D, Ruiz de Luna R, et al. Multicenter study of ceftolozane/tazobactam for treatment of Pseudomonas aeruginosa infections in critically ill patients. Int J Antimicrob Agents 2021; 57:106270.
Bergas A, Albasanz-Puig A, Fernández-Cruz A, et al. Real-life use of ceftolozane/tazobactam for the treatment of bloodstream infection due to Pseudomonas aeruginosa in neutropenic hematologic patients: a matched control study (ZENITH Study). Microbiol Spectr 2022; 10:e0229221.
Fraile-Ribot PA, Zamorano L, Orellana R, et al. Activity of imipenem-relebactam against a large collection of Pseudomonas aeruginosa clinical isolates and isogenic β-lactam-resistant mutants. Antimicrob Agents Chemother 2020; 64:e02165–e2219.
Stone GG, Newell P, Gasink LB, et al. Clinical activity of ceftazidime/avibactam against MDR Enterobacteriaceae and Pseudomonas aeruginosa: pooled data from the ceftazidime/avibactam Phase III clinical trial programme. J Antimicrob Chemother 2018; 73:2519–2523.
Davido B, Fellous L, Lawrence C, et al. Ceftazidime-avibactam and aztreonam, an interesting strategy to overcome β-lactam resistance conferred by metallo-β-lactamases in Enterobacteriaceae and Pseudomonas aeruginosa. Antimicrob Agents Chemother 2017; 61:e01008-17.
Bassetti M, Echols R, Matsunaga Y, et al. Efficacy and safety of cefiderocol or best available therapy for the treatment of serious infections caused by carbapenem-resistant Gram-negative bacteria (CREDIBLE-CR): a randomised, open-label, multicentre, pathogen-focused, descriptive, phase 3 trial. Lancet Infect Dis 2021; 21:226–240.
Meschiari M, Volpi S, Faltoni M, et al. Real-life experience with compassionate use of cefiderocol for difficult-to-treat resistant Pseudomonas aeruginosa (DTR-P) infections. JAC Antimicrob Resist 2021; 3:dlab188.
Larcher R, Laffont-Lozes P, Roger C, et al. Last resort beta-lactam antibiotics for treatment of New-Delhi Metallo-Beta-Lactamase producing Enterobacterales and other Difficult-to-Treat Resistance in Gram-negative bacteria: a real-life study. Front Cell Infect Microbiol 2022; 12:1048633.
Soman R, Bakthavatchalam YD, Nadarajan A, et al. Is it time to move away from polymyxins?: evidence and alternatives. Eur J Clin Microbiol Infect Dis 2021; 40:461–475.
Gatti M, Giannella M, Rinaldi M, et al. Pharmacokinetic/pharmacodynamic analysis of continuous-infusion fosfomycin in combination with extended-infusion cefiderocol or continuous-infusion ceftazidime-avibactam in a case series of difficult-to-treat resistant pseudomonas aeruginosa bloodstream infections and/or hospital-acquired pneumonia. Antibiotics (Basel) 2022; 11:1739.
Turton JF, Ward ME, Woodford N, et al. The role of ISAba1 in expression of OXA carbapenemase genes in Acinetobacter baumannii. FEMS Microbiol Lett 2006; 258:72–77.
Kurihara MNL, Sales RO de, Silva KE da, et al. Multidrug-resistant Acinetobacter baumannii outbreaks: a global problem in healthcare settings. Rev Soc Bras Med Trop 2020; 53:e20200248.
Queenan AM, Bush K. Carbapenemases: the versatile beta-lactamases. Clin Microbiol Rev 2007; 20:440–458.
Djahmi N, Dunyach-Remy C, Pantel A, et al. Epidemiology of carbapenemase-producing Enterobacteriaceae and Acinetobacter baumannii in Mediterranean countries. Biomed Res Int 2014; 2014:305784.
Lyu C, Zhang Y, Liu X, et al. Clinical efficacy and safety of polymyxins based versus nonpolymyxins based therapies in the infections caused by carbapenem-resistant Acinetobacter baumannii: a systematic review and meta-analysis. BMC Infect Dis 2020; 20:296.
Assimakopoulos SF, Karamouzos V, Lefkaditi A, et al. Triple combination therapy with high-dose ampicillin/sulbactam, high-dose tigecycline and colistin in the treatment of ventilator-associated pneumonia caused by pan-drug resistant Acinetobacter baumannii: a case series study. Infez Med 2019; 27:11–16.
Oliva A, Ceccarelli G, De Angelis M, et al. Cefiderocol for compassionate use in the treatment of complicated infections caused by extensively and pan-resistant Acinetobacter baumannii. J Glob Antimicrob Resist 2020; 23:292–296.
Pascale R, Pasquini Z, Bartoletti M, et al. Cefiderocol treatment for carbapenem-resistant Acinetobacter baumannii infection in the ICU during the COVID-19 pandemic: a multicentre cohort study. JAC Antimicrob Resist 2021; 3:dlab174.
Falcone M, Tiseo G, Leonildi A, et al. Cefiderocol - compared to colistin-based regimens for the treatment of severe infections caused by carbapenem-resistant Acinetobacter baumannii. Antimicrob Agents Chemother 2022; 66:e0214221.
Alosaimy S, Morrisette T, Lagnf AM, et al. Clinical outcomes of eravacycline in patients treated predominately for carbapenem-resistant Acinetobacter baumannii. Microbiol Spectr 2022; 10:e0047922.
Mermel LA, Allon M, Bouza E, et al. Clinical practice guidelines for the diagnosis and management of intravascular catheter-related infection: 2009 Update by the Infectious Diseases Society of America. Clin Infect Dis 2009; 49:1–45.
Martínez ML, Ferrer R, Torrents E, et al. Impact of source control in patients with severe sepsis and septic shock. Crit Care Med 2017; 45:11–19.
Bloos F, Rüddel H, Thomas-Rüddel D, et al. Effect of a multifaceted educational intervention for antiinfectious measures on sepsis mortality: a cluster randomized trial. Intensive Care Med 2017; 43:1602–1612.
Azuhata T, Kinoshita K, Kawano D, et al. Time from admission to initiation of surgery for source control is a critical determinant of survival in patients with gastrointestinal perforation with associated septic shock. Crit Care 2014; 18:R87.

Auteurs

Silvia Dettori (S)

Infectious Diseases Unit, San Martino Policlinico Hospital - IRCCS for Oncology and Neuroscience.

Federica Portunato (F)

Infectious Diseases Unit, San Martino Policlinico Hospital - IRCCS for Oncology and Neuroscience.

Antonio Vena (A)

Infectious Diseases Unit, San Martino Policlinico Hospital - IRCCS for Oncology and Neuroscience.
Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy.

Daniele Roberto Giacobbe (DR)

Infectious Diseases Unit, San Martino Policlinico Hospital - IRCCS for Oncology and Neuroscience.
Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy.

Matteo Bassetti (M)

Infectious Diseases Unit, San Martino Policlinico Hospital - IRCCS for Oncology and Neuroscience.
Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH