Gestational intermittent hypoxia increases FosB-immunoreactive perikaryas in the paraventricular nucleus of the hypothalamus of adult male (but not female) rats.
cardiorespiratory control
development
intermittent hypoxia
stress
Journal
Experimental physiology
ISSN: 1469-445X
Titre abrégé: Exp Physiol
Pays: England
ID NLM: 9002940
Informations de publication
Date de publication:
11 2023
11 2023
Historique:
received:
12
06
2023
accepted:
10
08
2023
medline:
2
11
2023
pubmed:
29
8
2023
entrez:
29
8
2023
Statut:
ppublish
Résumé
Sleep-disordered breathing is a respiratory disorder commonly experienced by pregnant women. The recurrent hypoxaemic events associated with sleep-disordered breathing have deleterious consequences for the mother and fetus. Adult male (but not female) rats born to dams subjected to gestational intermittent hypoxia (GIH) have a higher resting blood pressure than control animals and show behavioural/neurodevelopmental disorders. The origin of this persistent, sex-specific effect of GIH in offspring is unknown, but disruption of the neuroendocrine stress pathways is a key mechanism by which gestational stress increases disease risk in progeny. Using FosB immunolabelling as a chronic marker of neuronal activation, we determined whether GIH augments basal expression of FosB in the perikaryas of cells in the paraventricular nucleus of the hypothalamus (PVN), a key structure in the regulation of the stress response and blood pressure. From gestational day 10, female rats were subjected to GIH for 8 h/day (light phase) until the day before delivery (gestational day 21); GIH consisted of 2 min hypoxic bouts (10.5% O
Substances chimiques
Fosb protein, rat
0
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1376-1385Subventions
Organisme : NHLBI NIH HHS
ID : R01 HL142752
Pays : United States
Commentaires et corrections
Type : CommentIn
Informations de copyright
© 2023 The Authors. Experimental Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
Références
Anders, M. V. (1942). An inexpensive apparatus for cutting tissue sections on the sliding microtome by the “Dry Ice” method. Stain Technology, 17(2), 85-87.
Ansorg, A., Bornkessel, K., Witte, O. W., & Urbach, A. (2015). Immunohistochemistry and multiple labeling with antibodies from the same host species to study adult hippocampal neurogenesis. Journal of Visualized Experiments: JoVE, 2015(98), 52551.
Benjafield, A. V., Ayas, N. T., Eastwood, P. R., Heinzer, R., Ip, M. S. M., Morrell, M. J., Nunez, C. M., Patel, S. R., Penzel, T., Pépin, J.-L., Peppard, P. E., Sinha, S., Tufik, S., Valentine, K., & Malhotra, A. (2019). Estimation of the global prevalence and burden of obstructive sleep apnoea: A literature-based analysis. The Lancet Respiratory Medicine, 7(8), 687-698.
Buss, C., Davis, E. P., Shahbaba, B., Pruessner, J. C., Head, K., & Sandman, C. A. (2012). Maternal cortisol over the course of pregnancy and subsequent child amygdala and hippocampus volumes and affective problems. Proceedings of the National Academy of Sciences, 109(20), E1312-E1319.
Challis, J. R. G., Matthews, S. G., Gibb, W., & Lye, S. J. (2000). Endocrine and paracrine regulation of birth at term and preterm. Endocrine Reviews, 21(5), 514-550.
Chen, Y. H., Kang, J. H., Lin, C. C., Wang, I. T., Keller, J. J., & Lin, H. C. (2012). Obstructive sleep apnea and the risk of adverse pregnancy outcomes. American Journal of Obstetrics and Gynecology, 206(2), 136.e1-136.e5.
Chintamaneni, K., Bruder, E. D., & Raff, H. (2013). Effects of age on ACTH, corticosterone, glucose, insulin, and mRNA levels during intermittent hypoxia in the neonatal rat. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 304(9), R782-R789.
Cho, Y.-M., Chou, J.-C., Fang, C.-M., Hu, S., Wang, K.-L., Wang, S.-W., & Wang, P. S. (2019). Chronic intermittent hypoxia stimulates testosterone production in rat Leydig cells. Life Sciences, 233, 116694.
Conde, S. V., Polotsky, V. Y., Joseph, V., & Kinkead, R. (2023). On the origins of sleep disordered breathing, cardiorespiratory and metabolic dysfunction: Which came first, the chicken or the egg? The Journal of Physiology, 601(16), 01-17.
Cunningham, E. T. J., & Sawchenko, P. E. (1988). Anatomical specificity of noradrenergic inputs to the paraventricular and supraoptic nuclei of the rat hypothalamus. The Journal of Comparative Neurology, 274(1), 60-76.
Dampney, R. A., Michelini, L. C., Li, D.-P., & Pan, H.-L. (2018). Regulation of sympathetic vasomotor activity by the hypothalamic paraventricular nucleus in normotensive and hypertensive states. American Journal of Physiology-Heart and Circulatory Physiology, 315(5), H1200-H1214.
Dbiec, J., & Ledoux, J. (2009). The amygdala and the neural pathways of fear (pp. 23-38). Humana Press.
Dominguez, J. E., & Habib, A. S. (2022). Obstructive sleep apnea in pregnant women. International Anesthesiology Clinics, 60(2), 59-65.
Dominguez, J. E., Krystal, A. D., & Habib, A. S. (2018). Obstructive sleep apnea in pregnant women: A review of pregnancy outcomes and an approach to management. Anesthesia & Analgesia, 127(5), 1167-1177.
Heinzer, R., Vat, S., Marques-Vidal, P., Marti-Soler, H., Andries, D., Tobback, N., Mooser, V., Preisig, M., Malhotra, A., Waeber, G., Vollenweider, P., Tafti, M., & Haba-Rubio, J. (2015). Prevalence of sleep-disordered breathing in the general population: The HypnoLaus study. The Lancet Respiratory Medicine, 3(4), 310-318.
Hodes, G. E., & Epperson, C. N. (2019). Sex differences in vulnerability and resilience to stress across the life span. Biological Psychiatry, 86(6), 421-432.
Housley, G. D., Martin-Body, R. L., Dawson, N. J., & Sinclair, J. D. (1987). Brain stem projections of the glossopharyngeal nerve and its carotid sinus branch in the rat. Neuroscience, 22(1), 237-250.
Kapoor, A., Dunn, E., Kostaki, A., Andrews, M. H., & Matthews, S. G. (2006). Fetal programming of hypothalamo-pituitary-adrenal function: Prenatal stress and glucocorticoids. The Journal of Physiology, 572(1), 31-44.
Keshavarzi, S., Sullivan, R. K. P., Ianno, D. J., & Sah, P. (2014). Functional properties and projections of neurons in the medial Amygdala. Journal of Neuroscience, 34(26), 8699-8715.
Kinkead, R., Ambrozio-Marques, D., Fournier, S., Gagnon, M., & Guay, L. M. (2023). Estrogens, age, and neonatal stress: Panic disorders and novel views on the contribution of non-medullary structures to respiratory control and CO2 responses. Frontiers in Physiology, 14, 1183933. In press.
Kinkead, R., Gagnon, M., Joseph, V., Sériès, F., & Ambrozio-Marques, D. (2021). Stress and loss of ovarian function: Novel insights into the origins of sex-based differences in the manifestations of respiratory control disorders during sleep. Clinics in Chest Medicine, 42(3), 391-405.
Kiss, J. Z., Martos, J., & Palkovits, M. (1991). Hypothalamic paraventricular nucleus: A quantitative analysis of cytoarchitectonic subdivisions in the rat. The Journal of Comparative Neurology, 313(4), 563-573.
Kivimäki, M., & Steptoe, A. (2018). Effects of stress on the development and progression of cardiovascular disease. Nature Reviews Cardiology, 15(4), 215-229.
Laouafa, S., Roussel, D., Marcouiller, F., Soliz, J., Gozal, D., Bairam, A., & Joseph, V. (2019). Roles of oestradiol receptor alpha and beta against hypertension and brain mitochondrial dysfunction under intermittent hypoxia in female rats. Acta Physiologica (Oxf), 226(2), e13255.
Lautarescu, A., Craig, M. C., & Glover, V. (2020). Prenatal stress: Effects on fetal and child brain development. International Review of Neurobiology, 150, 17-40.
Lombard, J. H. (2010). Depression, psychological stress, vascular dysfunction, and cardiovascular disease: Thinking outside the barrel. Journal of Applied Physiology, 108(5), 1025-1026.
Malter Cohen, M., Jing, D., Yang, R. R., Tottenham, N., Lee, F. S., & Casey, B. J. (2013). Early-life stress has persistent effects on amygdala function and development in mice and humans. Proceedings of the National Academy of Sciences, 110(45), 18274-18278.
Martins, F. O., & Conde, S. V. (2021). Gender differences in the context of obstructive sleep apnea and metabolic diseases. Frontiers in Physiology, 12, 792633.
McEwen, B. S. (2008). Central effects of stress hormones in health and disease: Understanding the protective and damaging effects of stress and stress mediators. European Journal of Pharmacology, 583(2-3), 174-185.
McEwen, B. S., & Gianaros, P. J. (2010). Central role of the brain in stress and adaptation: Links to socioeconomic status, health, and disease. Annals of the New York Academy of Sciences, 1186(1), 190-222.
Nestler, E. J. (2012). Transcriptional mechanisms of drug addiction. Clinical Psychopharmacology and Neuroscience, 10(3), 136-143.
Paxinos, G., & Watson, C. (1998). The rat brain in stereotaxic coordinates. Academic Press.
Peppard, P. E., Young, T., Barnet, J. H., Palta, M., Hagen, E. W., & Hla, K. M. (2013). Increased prevalence of sleep-disordered breathing in adults. American Journal of Epidemiology, 177(9), 1006-1014.
Perrotti, L. I., Hadeishi, Y., Ulery, P. G., Barrot, M., Monteggia, L., Duman, R. S., & Nestler, E. J. (2004). Induction of ΔFosB in reward-related brain structures after chronic stress. The Journal of Neuroscience, 24(47), 10594-10602.
Petrov, T., Krukoff, T. L., & Jhamandas, J. H. (1995). Convergent influence of the central nucleus of the amygdala and the paraventricular hypothalamic nucleus upon brainstem autonomic neurons as revealed by c-fos expression and anatomical tracing. Journal of Neuroscience Research, 42(6), 835-845.
Pien, G. W., Pack, A. I., Jackson, N., Maislin, G., Macones, G. A., & Schwab, R. J. (2014). Risk factors for sleep-disordered breathing in pregnancy. Thorax, 69(4), 371-377.
Pietrobon, C. B., Miranda, R. A., Bertasso, I. M., Mathias, P. C. d. F., Bonfleur, M. L., Balbo, S. L., Reis, M. A. d. B., Latorraca, M. Q., Arantes, V. C., de Oliveira, E., Lisboa, P. C., & de Moura, E. G. (2020). Early weaning induces short- and long-term effects on pancreatic islets in Wistar rats of both sexes. The Journal of Physiology, 598(3), 489-502.
Prabhakar, N. R., Kumar, G. K., & Peng, Y.-J. (2012). Sympatho-adrenal activation by chronic intermittent hypoxia. Journal of Applied Physiology, 113(8), 1304-1310.
Reyes-Zúñiga, M., & Torre-Bouscoulet, L. (2016). Obstructive sleep apnea and perinatal risk. Revista De Investigacion Clinica, 68, 281-285.
Ribon-Demars, A., Pialoux, V., Boreau, A., Marcouiller, F., Larivière, R., Bairam, A., & Joseph, V. (2019). Protective roles of estradiol against vascular oxidative stress in ovariectomized female rats exposed to normoxia or intermittent hypoxia. Acta Physiologica, 225(2), e13159.
Rodrigues, S. M., LeDoux, J. E., & Sapolsky, R. M. (2009). The influence of stress hormones on fear circuitry. Annual Review of Neuroscience, 32(1), 289-313.
Rosin, D. L., Chang, D. A., & Guyenet, P. G. (2006). Afferent and efferent connections of the rat retrotrapezoid nucleus. The Journal of Comparative Neurology, 499(1), 64-89.
Savić, B., Murphy, D., & Japundžić-Žigon, N. (2022). The paraventricular nucleus of the hypothalamus in control of blood pressure and blood pressure variability. Frontiers in Physiology, 13, 858941.
Sharp, B. M. (2017). Basolateral amygdala and stress-induced hyperexcitability affect motivated behaviors and addiction. Translational Psychiatry, 7(8), e1194-e1194.
Shonkoff, J. P., Boyce, W. T., & McEwen, B. S. (2009). Neuroscience, molecular biology, and the childhood roots of health disparities: Building a new framework for health promotion and disease prevention. Jama, 301(21), 2252-2259.
Sladek, C. D., Michelini, L. C., Stachenfeld, N. S., Stern, J. E., & Urban, J. H. (2015). Endocrine-autonomic linkages. Comprehensive Physiology, 5(3), 1281-1323.
Song, R., Mishra, J. S., Dangudubiyyam, S. V., Antony, K. M., Baker, T. L., Watters, J. J., & Kumar, S. (2022). Gestational intermittent hypoxia induces sex-specific impairment in endothelial mechanisms and sex steroid hormone levels in male rat offspring. Reproductive Sciences, 29(5), 1531-1541.
Spiers, J. G., Chen, H.-J. C., Sernia, C., & Lavidis, N. A. (2015). Activation of the hypothalamic-pituitary-adrenal stress axis induces cellular oxidative stress. Frontiers in Neuroscience, 8, 456.
Tenorio-Lopes, L., & Kinkead, R. (2021). Sex-specific effects of stress on respiratory control: Plasticity, adaptation, and dysfunction. Comprehensive Physiology, 11, 1-38.
Ulrich-Lai, Y. M., & Herman, J. P. (2009). Neural regulation of endocrine and autonomic stress responses. Nature Reviews Neuroscience, 10(6), 397-409.
Van den Bergh, B. R. H., van den Heuvel, M. I., Lahti, M., Braeken, M., de Rooij, S. R., Entringer, S., Hoyer, D., Roseboom, T., Räikkönen, K., King, S., & Schwab, M. (2020). Prenatal developmental origins of behavior and mental health: The influence of maternal stress in pregnancy. Neuroscience & Biobehavioral Reviews, 117, 26-64.
Vanderplow, A. M., Kermath, B. A., Bernhardt, C. R., Gums, K. T., Seablom, E. N., Radcliff, A. B., Ewald, A. C., Jones, M. V., Baker, T. L., Watters, J. J., & Cahill, M. E. (2022). A feature of maternal sleep apnea during gestation causes autism-relevant neuronal and behavioral phenotypes in offspring. PLoS Biology, 20(2), e3001502.
Weinstock, M. (2005). The potential influence of maternal stress hormones on development and mental health of the offspring. Brain, Behavior, and Immunity, 19(4), 296-308.
Yamashita, S., & Katsumata, O. (2017). Heat-induced antigen retrieval in immunohistochemistry: Mechanisms and applications. Methods in Molecular Biology, 1560, 147-161.
Yang, C. F., Kim, E. J., Callaway, E. M., & Feldman, J. L. (2020). Monosynaptic projections to excitatory and inhibitory preBötzinger complex neurons. Frontiers in Neuroanatomy, 14, 58.
Yang, K. (1997). Placental 11 beta-hydroxysteroid dehydrogenase: Barrier to maternal glucocorticoids. Reviews of Reproduction, 2(3), 129-132.
Young, T., Palta, M., Dempsey, J., Skatrud, J., Weber, S., & Badr, S. (1993). The occurrence of sleep-disordered breathing among middle-aged adults. New England Journal of Medicine, 328(17), 1230-1235.
Zhang, W.-H., Zhang, J.-Y., Holmes, A., & Pan, B.-X. (2021). Amygdala circuit substrates for stress adaptation and adversity. Biological Psychiatry, 89(9), 847-856.
Ziemann, A. E., Allen, J. E., Dahdaleh, N. S., Drebot, I. I., Coryell, M. W., Wunsch, A. M., Lynch, C. M., Faraci, F. M., Howard Iii, M. A., Welsh, M. J., & Wemmie, J. A. (2009). The amygdala is a chemosensor that detects carbon dioxide and acidosis to elicit fear behavior. Cell, 139(5), 1012-1021.