MiRNAs regulate cell communication in osteogenesis-angiogenesis coupling during bone regeneration.
Bone regeneration
H-type vessels
MiRNAs
Osteogenesis-angiogenesis coupling
Signaling pathway
Journal
Molecular biology reports
ISSN: 1573-4978
Titre abrégé: Mol Biol Rep
Pays: Netherlands
ID NLM: 0403234
Informations de publication
Date de publication:
Oct 2023
Oct 2023
Historique:
received:
24
03
2023
accepted:
25
07
2023
medline:
26
9
2023
pubmed:
29
8
2023
entrez:
29
8
2023
Statut:
ppublish
Résumé
Bone regeneration is a complex process that requires not only the participation of multiple cell types, but also signal communication between cells. The two basic processes of osteogenesis and angiogenesis are closely related to bone regeneration and bone homeostasis. H-type vessels are a subtype of bone vessels characterized by high expression of CD31 and EMCN. These vessels play a key role in the regulation of bone regeneration and are important mediators of coupling between osteogenesis and angiogenesis. Molecular regulation between different cell types is important for coordination of osteogenesis and angiogenesis that promotes bone regeneration. MiRNAs are small non-coding RNAs that predominantly regulate gene expression at the post-transcriptional level and are closely related to cell communication. Specifically, miRNAs transduce external stimuli through various cell signaling pathways and cause a series of physiological and pathological effects. They are also deeply involved in the bone repair process. This review focuses on three signaling pathways related to osteogenesis-angiogenesis coupling, as well as the miRNAs involved in these pathways. Elucidation of the molecular mechanisms governing osteogenesis and angiogenesis is of great significance for bone regeneration.
Identifiants
pubmed: 37642761
doi: 10.1007/s11033-023-08709-6
pii: 10.1007/s11033-023-08709-6
doi:
Substances chimiques
MicroRNAs
0
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
8715-8728Subventions
Organisme : National Nature Science Foundation of China
ID : No.31570950
Organisme : the Science and Technology Foundation of Sichuan Province
ID : No.2022YFS0123
Organisme : College Students' innovation training project of Sichuan university
ID : No.202210610196
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Nature B.V.
Références
Han Y, You X, Xing W et al (2018) Paracrine and endocrine actions of bone-the functions of secretory proteins from osteoblasts, osteocytes, and osteoclasts. Bone Res 6:16. https://doi.org/10.1038/s41413-018-0019-6
doi: 10.1038/s41413-018-0019-6
Filipowska J, Tomaszewski KA, Niedźwiedzki Ł et al (2017) The role of vasculature in bone development, regeneration and proper systemic functioning. Angiogenesis 20:291–302. https://doi.org/10.1007/s10456-017-9541-1
doi: 10.1007/s10456-017-9541-1
O’Brien J, Hayder H, Zayed Y, Peng C (2018) Overview of MicroRNA Biogenesis, Mechanisms of actions, and circulation. Front Endocrinol (Lausanne) 9:402. https://doi.org/10.3389/fendo.2018.00402
doi: 10.3389/fendo.2018.00402
Paul P, Chakraborty A, Sarkar D et al (2018) Interplay between miRNAs and human diseases. J Cell Physiol 233:2007–2018. https://doi.org/10.1002/jcp.25854
doi: 10.1002/jcp.25854
Tüfekci KU, Oner MG, Meuwissen RLJ, Genç S (2014) The role of microRNAs in human diseases. Methods Mol Biol 1107:33–50. https://doi.org/10.1007/978-1-62703-748-8_3
doi: 10.1007/978-1-62703-748-8_3
Wang J, Chen J, Sen S (2016) MicroRNA as biomarkers and Diagnostics. J Cell Physiol 231:25–30. https://doi.org/10.1002/jcp.25056
doi: 10.1002/jcp.25056
Fröhlich LF (2019) Micrornas at the interface between Osteogenesis and Angiogenesis as targets for bone regeneration. Cells 8:E121. https://doi.org/10.3390/cells8020121
doi: 10.3390/cells8020121
Hosseinpour S, He Y, Nanda A, Ye Q (2019) MicroRNAs involved in the regulation of Angiogenesis in Bone Regeneration. Calcif Tissue Int 105:223–238. https://doi.org/10.1007/s00223-019-00571-8
doi: 10.1007/s00223-019-00571-8
Majidinia M, Sadeghpour A, Yousefi B (2018) The roles of signaling pathways in bone repair and regeneration. J Cell Physiol 233:2937–2948. https://doi.org/10.1002/jcp.26042
doi: 10.1002/jcp.26042
Colnot C (2009) Skeletal cell fate decisions within periosteum and bone marrow during bone regeneration. J Bone Miner Res 24:274–282. https://doi.org/10.1359/jbmr.081003
doi: 10.1359/jbmr.081003
Hadjiargyrou M, O’Keefe RJ (2014) The convergence of fracture repair and stem cells: interplay of genes, aging, environmental factors and disease. J Bone Miner Res 29:2307–2322. https://doi.org/10.1002/jbmr.2373
doi: 10.1002/jbmr.2373
le Noble F, le Noble J (2014) Bone biology: vessels of rejuvenation. Nature 507:313–314. https://doi.org/10.1038/nature13210
doi: 10.1038/nature13210
Ai-Aql ZS, Alagl AS, Graves DT et al (2008) Molecular mechanisms controlling bone formation during fracture healing and distraction osteogenesis. J Dent Res 87:107–118. https://doi.org/10.1177/154405910808700215
doi: 10.1177/154405910808700215
Claes L, Recknagel S, Ignatius A (2012) Fracture healing under healthy and inflammatory conditions. Nat Rev Rheumatol 8:133–143. https://doi.org/10.1038/nrrheum.2012.1
doi: 10.1038/nrrheum.2012.1
Runyan CM, Gabrick KS (2017) Biology of bone formation, Fracture Healing, and distraction osteogenesis. J Craniofac Surg 28:1380–1389. https://doi.org/10.1097/SCS.0000000000003625
doi: 10.1097/SCS.0000000000003625
Bahney CS, Hu DP, Miclau T, Marcucio RS (2015) The multifaceted role of the vasculature in endochondral fracture repair. Front Endocrinol (Lausanne) 6:4. https://doi.org/10.3389/fendo.2015.00004
doi: 10.3389/fendo.2015.00004
Stegen S, van Gastel N, Carmeliet G (2015) Bringing new life to damaged bone: the importance of angiogenesis in bone repair and regeneration. Bone 70:19–27. https://doi.org/10.1016/j.bone.2014.09.017
doi: 10.1016/j.bone.2014.09.017
Schmidt-Bleek K, Schell H, Lienau J et al (2014) Initial immune reaction and angiogenesis in bone healing. J Tissue Eng Regen Med 8:120–130. https://doi.org/10.1002/term.1505
doi: 10.1002/term.1505
Hankenson KD, Dishowitz M, Gray C, Schenker M (2011) Angiogenesis in bone regeneration. Injury 42:556–561. https://doi.org/10.1016/j.injury.2011.03.035
doi: 10.1016/j.injury.2011.03.035
Hu K, Olsen BR (2016) Osteoblast-derived VEGF regulates osteoblast differentiation and bone formation during bone repair. J Clin Invest 126:509–526. https://doi.org/10.1172/JCI82585
doi: 10.1172/JCI82585
Huang B, Wang W, Li Q et al (2016) Osteoblasts secrete Cxcl9 to regulate angiogenesis in bone. Nat Commun 7:13885. https://doi.org/10.1038/ncomms13885
doi: 10.1038/ncomms13885
Grosso A, Burger MG, Lunger A et al (2017) It takes two to Tango: Coupling of Angiogenesis and Osteogenesis for Bone Regeneration. Front Bioeng Biotechnol 5:68. https://doi.org/10.3389/fbioe.2017.00068
doi: 10.3389/fbioe.2017.00068
Saran U, Gemini Piperni S, Chatterjee S (2014) Role of angiogenesis in bone repair. Arch Biochem Biophys 561:109–117. https://doi.org/10.1016/j.abb.2014.07.006
doi: 10.1016/j.abb.2014.07.006
Ramasamy SK, Kusumbe AP, Wang L, Adams RH (2014) Endothelial notch activity promotes angiogenesis and osteogenesis in bone. Nature 507:376–380. https://doi.org/10.1038/nature13146
doi: 10.1038/nature13146
Murata K, Ito H, Yoshitomi H et al (2014) Inhibition of miR-92a enhances fracture healing via promoting angiogenesis in a model of stabilized fracture in young mice. J Bone Miner Res 29:316–326. https://doi.org/10.1002/jbmr.2040
doi: 10.1002/jbmr.2040
Chen J, Hendriks M, Chatzis A et al (2020) Bone vasculature and bone marrow vascular niches in Health and Disease. J Bone Miner Res 35:2103–2120. https://doi.org/10.1002/jbmr.4171
doi: 10.1002/jbmr.4171
Hausman MR, Schaffler MB, Majeska RJ (2001) Prevention of fracture healing in rats by an inhibitor of angiogenesis. Bone 29:560–564. https://doi.org/10.1016/s8756-3282(01)00608-1
doi: 10.1016/s8756-3282(01)00608-1
Maes C, Kobayashi T, Selig MK et al (2010) Osteoblast precursors, but not mature osteoblasts, move into developing and fractured bones along with invading blood vessels. Dev Cell 19:329–344. https://doi.org/10.1016/j.devcel.2010.07.010
doi: 10.1016/j.devcel.2010.07.010
Chim SM, Tickner J, Chow ST et al (2013) Angiogenic factors in bone local environment. Cytokine Growth Factor Rev 24:297–310. https://doi.org/10.1016/j.cytogfr.2013.03.008
doi: 10.1016/j.cytogfr.2013.03.008
Clarkin CE, Emery RJ, Pitsillides AA, Wheeler-Jones CPD (2008) Evaluation of VEGF-mediated signaling in primary human cells reveals a paracrine action for VEGF in osteoblast-mediated crosstalk to endothelial cells. J Cell Physiol 214:537–544. https://doi.org/10.1002/jcp.21234
doi: 10.1002/jcp.21234
Brandi ML, Collin-Osdoby P (2006) Vascular biology and the skeleton. J Bone Miner Res 21:183–192. https://doi.org/10.1359/JBMR.050917
doi: 10.1359/JBMR.050917
Thi MM, Suadicani SO, Spray DC (2010) Fluid Flow-induced Soluble Vascular endothelial growth factor Isoforms regulate actin adaptation in Osteoblasts*. J Biol Chem 285:30931–30941. https://doi.org/10.1074/jbc.M110.114975
doi: 10.1074/jbc.M110.114975
Sivaraj KK, Adams RH (2016) Blood vessel formation and function in bone. Development 143:2706–2715. https://doi.org/10.1242/dev.136861
doi: 10.1242/dev.136861
Kusumbe AP, Ramasamy SK, Adams RH (2014) Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature 507:323–328. https://doi.org/10.1038/nature13145
doi: 10.1038/nature13145
Nakashima K, Zhou X, Kunkel G et al (2002) The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 108:17–29. https://doi.org/10.1016/s0092-8674(01)00622-5
doi: 10.1016/s0092-8674(01)00622-5
Komori T (2019) Regulation of proliferation, differentiation and functions of osteoblasts by Runx2. Int J Mol Sci 20:E1694. https://doi.org/10.3390/ijms20071694
doi: 10.3390/ijms20071694
Zhu S, Bennett S, Kuek V et al (2020) Endothelial cells produce angiocrine factors to regulate bone and cartilage via versatile mechanisms. Theranostics 10:5957–5965. https://doi.org/10.7150/thno.45422
doi: 10.7150/thno.45422
Zhu S, Yao F, Qiu H et al (2018) Coupling factors and exosomal packaging microRNAs involved in the regulation of bone remodelling. Biol Rev Camb Philos Soc 93:469–480. https://doi.org/10.1111/brv.12353
doi: 10.1111/brv.12353
He W-Z, Yang M, Jiang Y et al (2022) Mir-188-3p targets skeletal endothelium coupling of angiogenesis and osteogenesis during ageing. Cell Death Dis 13:1–13. https://doi.org/10.1038/s41419-022-04902-w
doi: 10.1038/s41419-022-04902-w
Li Y, Fan L, Liu S et al (2013) The promotion of bone regeneration through positive regulation of angiogenic–osteogenic coupling using microRNA-26a. Biomaterials 34:5048–5058. https://doi.org/10.1016/j.biomaterials.2013.03.052
doi: 10.1016/j.biomaterials.2013.03.052
Yoshizuka M, Nakasa T, Kawanishi Y et al (2016) Inhibition of microRNA-222 expression accelerates bone healing with enhancement of osteogenesis, chondrogenesis, and angiogenesis in a rat refractory fracture model. J Orthop Sci 21:852–858. https://doi.org/10.1016/j.jos.2016.07.021
doi: 10.1016/j.jos.2016.07.021
Ohh M, Park CW, Ivan M et al (2000) Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel-Lindau protein. Nat Cell Biol 2:423–427. https://doi.org/10.1038/35017054
doi: 10.1038/35017054
Seagroves TN, Ryan HE, Lu H et al (2001) Transcription factor HIF-1 is a necessary mediator of the pasteur effect in mammalian cells. Mol Cell Biol 21:3436–3444. https://doi.org/10.1128/MCB.21.10.3436-3444.2001
doi: 10.1128/MCB.21.10.3436-3444.2001
Masson N, Willam C, Maxwell PH et al (2001) Independent function of two destruction domains in hypoxia-inducible factor-alpha chains activated by prolyl hydroxylation. EMBO J 20:5197–5206. https://doi.org/10.1093/emboj/20.18.5197
doi: 10.1093/emboj/20.18.5197
Krock BL, Skuli N, Simon MC (2011) Hypoxia-induced angiogenesis: good and evil. Genes Cancer 2:1117–1133. https://doi.org/10.1177/1947601911423654
doi: 10.1177/1947601911423654
Kusumbe AP, Ramasamy SK, Itkin T et al (2016) Age-dependent modulation of vascular niches for haematopoietic stem cells. Nature 532:380–384. https://doi.org/10.1038/nature17638
doi: 10.1038/nature17638
Bai H, Guo X, Tan Y et al (2022) Hypoxia inducible factor-1 signaling pathway in macrophage involved angiogenesis in materials-instructed osteo-induction. J Mater Chem B 10:6483–6495. https://doi.org/10.1039/D2TB00811D
doi: 10.1039/D2TB00811D
Gee HE, Ivan C, Calin GA, Ivan M (2014) HypoxamiRs and Cancer: from Biology to targeted therapy. Antioxid Redox Signal 21:1220–1238. https://doi.org/10.1089/ars.2013.5639
doi: 10.1089/ars.2013.5639
Ye H, Pang L, Wu Q et al (2015) A critical role of mir-199a in the cell biological behaviors of colorectal cancer. Diagn Pathol 10:65. https://doi.org/10.1186/s13000-015-0260-x
doi: 10.1186/s13000-015-0260-x
Jia Y, Zhu Y, Qiu S et al (2019) Exosomes secreted by endothelial progenitor cells accelerate bone regeneration during distraction osteogenesis by stimulating angiogenesis. Stem Cell Res Ther 10:12. https://doi.org/10.1186/s13287-018-1115-7
doi: 10.1186/s13287-018-1115-7
Liu X-D, Cai F, Liu L et al (2015) MicroRNA-210 is involved in the regulation of postmenopausal osteoporosis through promotion of VEGF expression and osteoblast differentiation. Biol Chem 396:339–347. https://doi.org/10.1515/hsz-2014-0268
doi: 10.1515/hsz-2014-0268
Yang W, Ma J, Zhou W et al (2017) Biological implications and clinical value of mir-210 in gastrointestinal cancer. Expert Rev Gastroenterol Hepatol 11:539–548. https://doi.org/10.1080/17474124.2017.1309281
doi: 10.1080/17474124.2017.1309281
Liu L-Z, Li C, Chen Q et al (2011) MiR-21 Induced Angiogenesis through AKT and ERK activation and HIF-1α expression. PLoS ONE 6:e19139. https://doi.org/10.1371/journal.pone.0019139
doi: 10.1371/journal.pone.0019139
Yang C, Liu X, Zhao K et al (2019) miRNA-21 promotes osteogenesis via the PTEN/PI3K/Akt/HIF-1α pathway and enhances bone regeneration in critical size defects. Stem Cell Res Ther 10:65. https://doi.org/10.1186/s13287-019-1168-2
doi: 10.1186/s13287-019-1168-2
Yang M, Li C-J, Sun X et al (2017) MiR-497∼195 cluster regulates angiogenesis during coupling with osteogenesis by maintaining endothelial notch and HIF-1α activity. Nat Commun 8:16003. https://doi.org/10.1038/ncomms16003
doi: 10.1038/ncomms16003
Jaakkola P, Mole DR, Tian YM et al (2001) Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292:468–472. https://doi.org/10.1126/science.1059796
doi: 10.1126/science.1059796
Lo Dico A, Costa V, Martelli C et al (2016) MiR675-5p Acts on HIF-1α to sustain hypoxic responses: a New Therapeutic Strategy for Glioma. Theranostics 6:1105–1118. https://doi.org/10.7150/thno.14700
doi: 10.7150/thno.14700
Costa V, Raimondi L, Conigliaro A et al (2017) Hypoxia-inducible factor 1Α may regulate the commitment of mesenchymal stromal cells toward angio-osteogenesis by mirna-675-5P. Cytotherapy 19:1412–1425. https://doi.org/10.1016/j.jcyt.2017.09.007
doi: 10.1016/j.jcyt.2017.09.007
Yamakuchi M, Lotterman CD, Bao C et al (2010) P53-induced microRNA-107 inhibits HIF-1 and tumor angiogenesis. Proc Natl Acad Sci U S A 107:6334–6339. https://doi.org/10.1073/pnas.0911082107
doi: 10.1073/pnas.0911082107
Yuan Q, Gao W, Liu B, Ye W (2014) Upregulation of miR-184 enhances the malignant Biological Behavior of Human Glioma Cell Line A172 by targeting FIH-1. CPB 34:1125–1136. https://doi.org/10.1159/000366326
doi: 10.1159/000366326
Wang Z, Jiao P, Zhong Y et al (2022) The endoplasmic reticulum-stressed Head and Neck squamous cell carcinoma cells Induced Exosomal miR-424-5p inhibits Angiogenesis and Migration of Humanumbilical Vein endothelial cells through LAMC1-Mediated Wnt/β-Catenin signaling pathway. Cell Transpl 31:9636897221083548. https://doi.org/10.1177/09636897221083549
doi: 10.1177/09636897221083549
Azizidoost S, Bavarsad MS, Bavarsad MS et al (2015) The role of notch signaling in bone marrow niche. Hematology 20:93–103. https://doi.org/10.1179/1607845414Y.0000000167
doi: 10.1179/1607845414Y.0000000167
C S, U L (2017) Notch Signaling in Development, tissue homeostasis, and Disease. https://doi.org/10.1152/physrev.00005.2017 . Physiological reviews 97:
Wang H, Zang C, Liu XS, Aster JC (2015) The role of notch receptors in transcriptional regulation. J Cell Physiol 230:982–988. https://doi.org/10.1002/jcp.24872
doi: 10.1002/jcp.24872
Benedito R, Roca C, Sörensen I et al (2009) The notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis. Cell 137:1124–1135. https://doi.org/10.1016/j.cell.2009.03.025
doi: 10.1016/j.cell.2009.03.025
Ramasamy SK, Kusumbe AP, Schiller M et al (2016) Blood flow controls bone vascular function and osteogenesis. Nat Commun 7:13601. https://doi.org/10.1038/ncomms13601
doi: 10.1038/ncomms13601
Krause C, Guzman A, Knaus P (2011) Noggin. Int J Biochem Cell Biol 43:478–481. https://doi.org/10.1016/j.biocel.2011.01.007
doi: 10.1016/j.biocel.2011.01.007
Wang L, Song G, Liu M et al (2016) MicroRNA-375 overexpression influences P19 cell proliferation, apoptosis and differentiation through the notch signaling pathway. Int J Mol Med 37:47–55. https://doi.org/10.3892/ijmm.2015.2399
doi: 10.3892/ijmm.2015.2399
Mavrakis KJ, Wolfe AL, Oricchio E et al (2010) Genome-wide RNA-mediated interference screen identifies miR-19 targets in notch-induced T-cell acute lymphoblastic leukaemia. Nat Cell Biol 12:372–379. https://doi.org/10.1038/ncb2037
doi: 10.1038/ncb2037
Ren K, Li T, Zhang W et al (2016) miR-199a-3p inhibits cell proliferation and induces apoptosis by targeting YAP1, suppressing Jagged1-Notch signaling in human hepatocellular carcinoma. J Biomed Sci 23:79. https://doi.org/10.1186/s12929-016-0295-7
doi: 10.1186/s12929-016-0295-7
John AA, Prakash R, Singh D (2019) miR-487b-3p impairs osteoblastogenesis by targeting notch-regulated ankyrin-repeat protein (Nrarp). J Endocrinol 241:249–263. https://doi.org/10.1530/JOE-19-0015
doi: 10.1530/JOE-19-0015
Kang H, Chen H, Huang P et al (2016) Glucocorticoids impair bone formation of bone marrow stromal stem cells by reciprocally regulating microRNA-34a-5p. Osteoporos Int 27:1493–1505. https://doi.org/10.1007/s00198-015-3381-x
doi: 10.1007/s00198-015-3381-x
Gama-Norton L, Ferrando E, Ruiz-Herguido C et al (2015) Notch signal strength controls cell fate in the haemogenic endothelium. Nat Commun 6:8510. https://doi.org/10.1038/ncomms9510
doi: 10.1038/ncomms9510
Bauer RC, Laney AO, Smith R et al (2010) Jagged1 (JAG1) mutations in patients with tetralogy of Fallot or pulmonic stenosis. Hum Mutat 31:594–601. https://doi.org/10.1002/humu.21231
doi: 10.1002/humu.21231
Luxán G, D’Amato G, MacGrogan D, de la Pompa JL (2016) Endocardial Notch Signaling in Cardiac Development and Disease. Circ Res 118:e1–e18. https://doi.org/10.1161/CIRCRESAHA.115.305350
doi: 10.1161/CIRCRESAHA.115.305350
Xiu M, Liu Y, Kuang B (2020) The oncogenic role of Jagged1/Notch signaling in cancer. Biomed Pharmacother 129:110416. https://doi.org/10.1016/j.biopha.2020.110416
doi: 10.1016/j.biopha.2020.110416
Zha X, Sun B, Zhang R et al (2018) Regulatory effect of microRNA-34a on osteogenesis and angiogenesis in glucocorticoid-induced osteonecrosis of the femoral head. J Orthop Res 36:417–424. https://doi.org/10.1002/jor.23613
doi: 10.1002/jor.23613
Jiang W, Zhu P, Zhang T et al (2021) MicroRNA-205 mediates endothelial progenitor functions in distraction osteogenesis by targeting the transcription regulator NOTCH2. Stem Cell Res Ther 12:101. https://doi.org/10.1186/s13287-021-02150-x
doi: 10.1186/s13287-021-02150-x
Izumi N, Helker C, Ehling M et al (2012) Fbxw7 controls angiogenesis by regulating endothelial notch activity. PLoS ONE 7:e41116. https://doi.org/10.1371/journal.pone.0041116
doi: 10.1371/journal.pone.0041116
Grünhagen J, Bhushan R, Degenkolbe E et al (2015) MiR-497∼195 cluster microRNAs regulate osteoblast differentiation by targeting BMP signaling. J Bone Miner Res 30:796–808. https://doi.org/10.1002/jbmr.2412
doi: 10.1002/jbmr.2412
Xu Y, Shu B, Tian Y et al (2018) Notch activation promotes osteoblast mineralization by inhibition of apoptosis. J Cell Physiol 233:6921–6928. https://doi.org/10.1002/jcp.26592
doi: 10.1002/jcp.26592
Zamurovic N, Cappellen D, Rohner D, Susa M (2004) Coordinated activation of notch, wnt, and transforming growth factor-beta signaling pathways in bone morphogenic protein 2-induced osteogenesis. Notch target gene Hey1 inhibits mineralization and Runx2 transcriptional activity. J Biol Chem 279:37704–37715. https://doi.org/10.1074/jbc.M403813200
doi: 10.1074/jbc.M403813200
Lv H, Sun Y, Zhang Y (2015) MiR-133 is involved in Estrogen Deficiency-Induced osteoporosis through modulating osteogenic differentiation of mesenchymal stem cells. Med Sci Monit 21:1527–1534. https://doi.org/10.12659/MSM.894323
doi: 10.12659/MSM.894323
Lv A, N T-M, Em DR (2021) Cell Biology of canonical wnt signaling. Annu Rev Cell Dev Biol 37. https://doi.org/10.1146/annurev-cellbio-120319-023657 . :
Nusse R, Clevers H (2017) Wnt/β-Catenin signaling, Disease, and emerging therapeutic modalities. Cell 169:985–999. https://doi.org/10.1016/j.cell.2017.05.016
doi: 10.1016/j.cell.2017.05.016
Pai SG, Carneiro BA, Mota JM et al (2017) Wnt/beta-catenin pathway: modulating anticancer immune response. J Hematol Oncol 10:101. https://doi.org/10.1186/s13045-017-0471-6
doi: 10.1186/s13045-017-0471-6
Yu X, Rong P-Z, Song M-S et al (2021) lncRNA SNHG1 induced by SP1 regulates bone remodeling and angiogenesis via sponging miR-181c-5p and modulating SFRP1/Wnt signaling pathway. Mol Med 27:141. https://doi.org/10.1186/s10020-021-00392-2
doi: 10.1186/s10020-021-00392-2
Manolagas SC (2014) Wnt signaling and osteoporosis. Maturitas 78:233–237. https://doi.org/10.1016/j.maturitas.2014.04.013
doi: 10.1016/j.maturitas.2014.04.013
Zhang W-B, Zhong W-J, Wang L (2014) A signal-amplification circuit between miR-218 and Wnt/β-catenin signal promotes human adipose tissue-derived stem cells osteogenic differentiation. Bone 58:59–66. https://doi.org/10.1016/j.bone.2013.09.015
doi: 10.1016/j.bone.2013.09.015
Gay I, Cavender A, Peto D et al (2014) Differentiation of human dental stem cells reveals a role for microRNA-218. J Periodontal Res 49:110–120. https://doi.org/10.1111/jre.12086
doi: 10.1111/jre.12086
Fráguas MS, Eggenschwiler R, Hoepfner J et al (2017) MicroRNA-29 impairs the early phase of reprogramming process by targeting active DNA demethylation enzymes and wnt signaling. Stem Cell Res 19:21–30. https://doi.org/10.1016/j.scr.2016.12.020
doi: 10.1016/j.scr.2016.12.020
Huang J, Song G, Yin Z et al (2017) MiR-29a and Messenger RNA expression of bone turnover markers in canonical wnt pathway in patients with Ankylosing Spondylitis. Clin Lab 63:955–960. https://doi.org/10.7754/Clin.Lab.2017.161214
doi: 10.7754/Clin.Lab.2017.161214
Sassi Y, Avramopoulos P, Ramanujam D et al (2017) Cardiac myocyte miR-29 promotes pathological remodeling of the heart by activating wnt signaling. Nat Commun 8:1614. https://doi.org/10.1038/s41467-017-01737-4
doi: 10.1038/s41467-017-01737-4
Kapinas K, Kessler C, Ricks T et al (2010) miR-29 modulates wnt signaling in human osteoblasts through a positive feedback loop. J Biol Chem 285:25221–25231. https://doi.org/10.1074/jbc.M110.116137
doi: 10.1074/jbc.M110.116137
Wang R, Zhang H, Ding W et al (2020) miR-143 promotes angiogenesis and osteoblast differentiation by targeting HDAC7. Cell Death Dis 11:179. https://doi.org/10.1038/s41419-020-2377-4
doi: 10.1038/s41419-020-2377-4
Jin Z, Wei W, Dechow PC, Wan Y (2013) HDAC7 inhibits osteoclastogenesis by reversing RANKL-triggered β-catenin switch. Mol Endocrinol 27:325–335. https://doi.org/10.1210/me.2012-1302
doi: 10.1210/me.2012-1302
Wu D, Chang X, Tian J et al (2021) Bone mesenchymal stem cells stimulation by magnetic nanoparticles and a static magnetic field: release of exosomal miR-1260a improves osteogenesis and angiogenesis. J Nanobiotechnol 19:209. https://doi.org/10.1186/s12951-021-00958-6
doi: 10.1186/s12951-021-00958-6
Wu X, Gu Q, Chen X et al (2019) MiR-27a targets DKK2 and SFRP1 to promote reosseointegration in the regenerative treatment of peri-implantitis. J Bone Miner Res 34:123–134. https://doi.org/10.1002/jbmr.3575
doi: 10.1002/jbmr.3575
Zhou B, Peng K, Wang G et al (2020) miR–483–3p promotes the osteogenesis of human osteoblasts by targeting Dikkopf 2 (DKK2) and the wnt signaling pathway. Int J Mol Med 46:1571–1581. https://doi.org/10.3892/ijmm.2020.4694
doi: 10.3892/ijmm.2020.4694
Li J, Zhang Y, Zhao Q et al (2015) MicroRNA-10a influences osteoblast differentiation and angiogenesis by regulating β-Catenin expression. Cell Physiol Biochem 37:2194–2208. https://doi.org/10.1159/000438576
doi: 10.1159/000438576
Sun W, Ma Y, Chen P, Wang D (2015) MicroRNA-10a silencing reverses cisplatin resistance in the A549/cisplatin human lung cancer cell line via the transforming growth factor-β/Smad2/STAT3/STAT5 pathway. Mol Med Rep 11:3854–3859. https://doi.org/10.3892/mmr.2015.3181
doi: 10.3892/mmr.2015.3181
Zhao H, Yeersheng R, Xia Y et al (2021) Hypoxia enhanced bone regeneration through the HIF-1α/β-Catenin pathway in femoral Head Osteonecrosis. Am J Med Sci 362:78–91. https://doi.org/10.1016/j.amjms.2021.03.005
doi: 10.1016/j.amjms.2021.03.005
Gonzalez-King H, García NA, Ontoria-Oviedo I et al (2017) Hypoxia Inducible Factor-1α potentiates jagged 1-Mediated angiogenesis by mesenchymal stem cell-derived exosomes. Stem Cells 35:1747–1759. https://doi.org/10.1002/stem.2618
doi: 10.1002/stem.2618