KLF2 Regulates Neural Differentiation of Dental Pulp-derived Stem Cells by Modulating Autophagy and Mitophagy.


Journal

Stem cell reviews and reports
ISSN: 2629-3277
Titre abrégé: Stem Cell Rev Rep
Pays: United States
ID NLM: 101752767

Informations de publication

Date de publication:
Nov 2023
Historique:
accepted: 09 08 2023
medline: 27 11 2023
pubmed: 29 8 2023
entrez: 29 8 2023
Statut: ppublish

Résumé

Transplantation of stem cells for treating neurodegenerative disorders is a promising future therapeutic approach. However, the molecular mechanism underlying the neuronal differentiation of dental pulp-derived stem cells (DPSC) remains inadequately explored. The current study aims to define the regulatory role of KLF2 (Kruppel-like factor 2) during the neural differentiation (ND) of DPSC. We first investigated the transcriptional and translational expression of KLF2, autophagy, and mitophagy-associated markers during the ND of DPSC by using quantitative RT-PCR and western blot methods. After that, we applied the chemical-mediated loss- and gain-of-function approaches using KLF2 inhibitor, GGPP (geranylgeranyl pyrophosphate), and KLF2 activator, GGTI-298 (geranylgeranyl transferase inhibitor-298) to delineate the role of KLF2 during ND of DPSC. The western blot, qRT-PCR, and immunocytochemistry were performed to determine the molecular changes during ND after KLF2 deficiency and KLF2 sufficiency. We also analyzed the oxygen consumption rate (OCR) and the extracellular acidification rate (ECAR) using the Seahorse XFe24 analyzer. Our study demonstrated that the expression level of KLF2, autophagy, and mitophagy-associated markers were significantly elevated during the ND of DPSC. Next, we found that the KLF2 inhibitor, GGPP significantly reduced the ND of DPSC. Inversely, KLF2 overexpression accelerated the molecular phenomenon of DPSC's commitment towards ND, indicating the crucial role of KLF2 in neurogenesis. Moreover, we found that the KLF2 positively regulated autophagy, mitophagy, and the Wnt5a signaling pathway during neurogenesis. Seahorse XFe24 analysis revealed that the ECAR and OCR parameters were significantly increased during ND, and inhibition of KLF2 marginally reversed them towards DPSC's cellular bioenergetics. However, KLF2 overexpression shifted the cellular energy metabolism toward the quiescent stage. Collectively, our findings provide the first evidence that the KLF2 critically regulates the neurogenesis of DPSC by inducing autophagy and mitophagy.

Sections du résumé

BACKGROUND BACKGROUND
Transplantation of stem cells for treating neurodegenerative disorders is a promising future therapeutic approach. However, the molecular mechanism underlying the neuronal differentiation of dental pulp-derived stem cells (DPSC) remains inadequately explored. The current study aims to define the regulatory role of KLF2 (Kruppel-like factor 2) during the neural differentiation (ND) of DPSC.
METHODS METHODS
We first investigated the transcriptional and translational expression of KLF2, autophagy, and mitophagy-associated markers during the ND of DPSC by using quantitative RT-PCR and western blot methods. After that, we applied the chemical-mediated loss- and gain-of-function approaches using KLF2 inhibitor, GGPP (geranylgeranyl pyrophosphate), and KLF2 activator, GGTI-298 (geranylgeranyl transferase inhibitor-298) to delineate the role of KLF2 during ND of DPSC. The western blot, qRT-PCR, and immunocytochemistry were performed to determine the molecular changes during ND after KLF2 deficiency and KLF2 sufficiency. We also analyzed the oxygen consumption rate (OCR) and the extracellular acidification rate (ECAR) using the Seahorse XFe24 analyzer.
RESULTS RESULTS
Our study demonstrated that the expression level of KLF2, autophagy, and mitophagy-associated markers were significantly elevated during the ND of DPSC. Next, we found that the KLF2 inhibitor, GGPP significantly reduced the ND of DPSC. Inversely, KLF2 overexpression accelerated the molecular phenomenon of DPSC's commitment towards ND, indicating the crucial role of KLF2 in neurogenesis. Moreover, we found that the KLF2 positively regulated autophagy, mitophagy, and the Wnt5a signaling pathway during neurogenesis. Seahorse XFe24 analysis revealed that the ECAR and OCR parameters were significantly increased during ND, and inhibition of KLF2 marginally reversed them towards DPSC's cellular bioenergetics. However, KLF2 overexpression shifted the cellular energy metabolism toward the quiescent stage.
CONCLUSION CONCLUSIONS
Collectively, our findings provide the first evidence that the KLF2 critically regulates the neurogenesis of DPSC by inducing autophagy and mitophagy.

Identifiants

pubmed: 37642902
doi: 10.1007/s12015-023-10607-0
pii: 10.1007/s12015-023-10607-0
doi:

Substances chimiques

Transcription Factors 0
KLF2 protein, human 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

2886-2900

Subventions

Organisme : NEI NIH HHS
ID : R42 EY031196
Pays : United States
Organisme : NIAMS NIH HHS
ID : R01 AR068279
Pays : United States
Organisme : NIA NIH HHS
ID : R41 AG057242
Pays : United States
Organisme : NIAMS NIH HHS
ID : R01AR068279
Pays : United States
Organisme : NIA NIH HHS
ID : 1R41AG057242
Pays : United States
Organisme : NEI NIH HHS
ID : R42EY031196
Pays : United States
Organisme : NIAMS NIH HHS
ID : R01AR068279
Pays : United States
Organisme : NEI NIH HHS
ID : R42EY031196
Pays : United States
Organisme : NIA NIH HHS
ID : 1R41AG057242
Pays : United States

Informations de copyright

© 2023. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.

Références

Gao, H. M., & Hong, J. S. (2008). Why neurodegenerative diseases are progressive: Uncontrolled inflammation drives disease progression. Trends In Immunology, 29(8), 357–365.
pubmed: 18599350 pmcid: 4794280
Lindvall, O., Kokaia, Z., & Martinez-Serrano, A. (2004). Stem cell therapy for human neurodegenerative disorders–how to make it work. Nature medicine, 10(7), S42–S50.
pubmed: 15272269
Joyce, N., Annett, G., Wirthlin, L., Olson, S., Bauer, G., & Nolta, J. A. (2010). Mesenchymal stem cells for the treatment of neurodegenerative disease. Regenerative medicine, 5(6), 933–946.
pubmed: 21082892
Reboussin, É., Buffault, J., Brignole-Baudouin, F., Goazigo, R. L., Riancho, L., Olmiere, C., et al. (2022). Evaluation of neuroprotective and immunomodulatory properties of mesenchymal stem cells in an ex vivo retinal explant model. Journal of neuroinflammation, 19(1), 1–17.
Kim, Y. J., Park, H. J., Lee, G., Bang, O. Y., Ahn, Y. H., Joe, E., et al. (2009). Neuroprotective effects of human mesenchymal stem cells on dopaminergic neurons through anti-inflammatory action. Glia, 57(1), 13–23.
pubmed: 18661552
Giacomelli, E., Vahsen, B. F., Calder, E. L., Xu, Y., Scaber, J., Gray, E., et al. (2022). Human stem cell models of neurodegeneration: From basic science of amyotrophic lateral sclerosis to clinical translation. Cell Stem Cell, 29(1), 11–35.
pubmed: 34995492 pmcid: 8785905
Puranik, N., Arukha, A. P., Yadav, S. K., Yadav, D., & Jin, J. O. (2022). Exploring the role of stem cell therapy in treating neurodegenerative diseases: Challenges and current perspectives. Current Stem Cell Research & Therapy, 17(2), 113–125.
Rolph, D. N., Deb, M., Kanji, S., Greene, C. J., Das, M., Joseph, M. (2018). Ferutinin directs dental pulp-derived stem cells towards the osteogenic lineage by epigenetically regulating canonical wnt signaling. Biochim Biophys Acta Mol Basis Dis. :165314.
Ledesma-Martínez, E., Mendoza-Núñez, V. M., & Santiago-Osorio, E. (2016). Mesenchymal stem cells derived from dental pulp: a review. Stem cells international. ;2016.
Lan, X., Sun, Z., Chu, C., Boltze, J., & Li, S. (2019). Dental pulp stem cells: An attractive alternative for cell therapy in ischemic stroke. Frontiers in neurology, 10, 824.
pubmed: 31428038 pmcid: 6689980
Mortada, I., Mortada, R., & Al Bazzal, M. (2018). Dental pulp stem cells and the management of neurological diseases: An update. Journal of Neuroscience Research, 96(2), 265–272.
pubmed: 28736906
Heng, B. C., Lim, L. W., Wu, W., & Zhang, C. (2016). An overview of protocols for the neural induction of dental and oral stem cells in vitro. Tissue Engineering Part B: Reviews, 22(3), 220–250.
pubmed: 26757369
Wang, F., Jia, Y., Liu, J., Zhai, J., Cao, N., Yue, W., et al. (2017). Dental pulp stem cells promote regeneration of damaged neuron cells on the cellular model of Alzheimer’s disease. Cell Biology International, 41(6), 639–650.
pubmed: 28328017
Sharma, Y., Shobha, K., Sundeep, M., Pinnelli, V. B., Parveen, S., & Dhanushkodi, A. (2022). Neural basis of Dental Pulp Stem cells and its potential application in Parkinson’s disease. CNS & neurological Disorders-Drug targets (formerly current drug Targets-CNS & neurological Disorders). ;21(1):62–76.
Mead, B., Logan, A., Berry, M., Leadbeater, W., & Scheven, B. A. (2017). Concise review: Dental pulp stem cells: A novel cell therapy for retinal and central nervous system repair. Stem Cells, 35(1), 61–67.
pubmed: 27273755
Abeysinghe, H. C., Bokhari, L., Quigley, A., Choolani, M., Chan, J., Dusting, G. J., et al. (2015). Pre-differentiation of human neural stem cells into GABAergic neurons prior to transplant results in greater repopulation of the damaged brain and accelerates functional recovery after transient ischemic stroke. Stem Cell Research & Therapy, 6, 186.
Bonaventura, G., Munafo, A., Bellanca, C. M., La Cognata, V., Iemmolo, R., Attaguile, G. A. (2021). Stem Cells: Innovative Therapeutic Options for Neurodegenerative Diseases? Cells. ;10(8).
Osathanon, T., Sawangmake, C., Nowwarote, N., & Pavasant, P. (2014). Neurogenic differentiation of human dental pulp stem cells using different induction protocols. Oral diseases, 20(4), 352–358.
pubmed: 23651465
Chang, C. C., Chang, K. C., Tsai, S. J., Chang, H. H., & Lin, C. P. (2014). Neurogenic differentiation of dental pulp stem cells to neuron-like cells in dopaminergic and motor neuronal inductive media. Journal of the Formosan Medical Association, 113(12), 956–965.
pubmed: 25438878
Heng, B. C., Jiang, S., Yi, B., Gong, T., Lim, L. W., & Zhang, C. (2019). Small molecules enhance neurogenic differentiation of dental-derived adult stem cells. Archives of oral biology, 102, 26–38.
pubmed: 30954806
Chang, N. C. (2020). Autophagy and stem cells: Self-eating for self-renewal. Frontiers in Cell and Developmental Biology, 8, 138.
pubmed: 32195258 pmcid: 7065261
Onishi, M., Yamano, K., Sato, M., Matsuda, N., & Okamoto, K. (2021). Molecular mechanisms and physiological functions of mitophagy. The EMBO journal, 40(3), e104705.
pubmed: 33438778 pmcid: 7849173
Lin, Q., Chen, J., Gu, L., Dan, X., Zhang, C., & Yang, Y. (2021). New insights into mitophagy and stem cells. Stem cell research & therapy, 12(1), 1–14.
Fleming, A., & Rubinsztein, D. C. (2020). Autophagy in neuronal development and plasticity. Trends in neurosciences, 43(10), 767–779.
pubmed: 32800535
Doxaki, C., & Palikaras, K. (2021). Neuronal mitophagy: Friend or foe? Frontiers in cell and developmental biology, 8, 611938.
pubmed: 33537304 pmcid: 7848077
Sotthibundhu, A., Muangchan, P., Phonchai, R., Promjantuek, W., Chaicharoenaudomrung, N., Kunhorm, P., et al. (2021). Autophagy promoted neural differentiation of human placenta-derived mesenchymal stem cells. in vivo, 35(5), 2609–2620.
pubmed: 34410948 pmcid: 8408712
Das, H., Kumar, A., Lin, Z., Patino, W. D., Hwang, P. M., Feinberg, M. W., et al. (2006). Kruppel-like factor 2 (KLF2) regulates proinflammatory activation of monocytes. Proc Natl Acad Sci U S A, 103(17), 6653–6658.
pubmed: 16617118 pmcid: 1458936
Rolph, D., & Das, H. (2020). Transcriptional regulation of Osteoclastogenesis: The emerging role of KLF2. Frontiers In Immunology, 11, 937.
pubmed: 32477372 pmcid: 7237574
Jha, P., & Das, H. (2017). KLF2 in regulation of NF-kappaB-mediated Immune cell function and inflammation. International Journal Of Molecular Sciences. ;18(11).
Sen-Banerjee, S., Mir, S., Lin, Z., Hamik, A., Atkins, G. B., Das, H., et al. (2005). Kruppel-like factor 2 as a novel mediator of statin effects in endothelial cells. Circulation, 112(5), 720–726.
pubmed: 16043642
Laha, D., Deb, M., & Das, H. (2019). KLF2 (kruppel-like factor 2 [lung]) regulates osteoclastogenesis by modulating autophagy. Autophagy, 15(12), 2063–2075.
pubmed: 30894058 pmcid: 6844519
Winkelmann, R., Sandrock, L., Porstner, M., Roth, E., Mathews, M., Hobeika, E., et al. (2011). B cell homeostasis and plasma cell homing controlled by Krüppel-like factor 2. Proceedings of the National Academy of Sciences, 108(2), 710–715.
Feinberg, M. W., Lin, Z., Fisch, S., & Jain, M. K. (2004). An emerging role for Kruppel-like factors in vascular biology. Trends In Cardiovascular Medicine, 14(6), 241–246.
pubmed: 15451516
Maity, J., Barthels, D., Sarkar, J., Prateeksha, P., Deb, M., Rolph, D., et al. (2022). Ferutinin induces osteoblast differentiation of DPSCs via induction of KLF2 and autophagy/mitophagy. Cell Death And Disease, 13(5), 1–12.
Wu, F., & Li, C. (2022). KLF2 up-regulates IRF4/HDAC7 to protect neonatal rats from hypoxic-ischemic brain damage. Cell death discovery, 8(1), 1–10.
Zhang, J. H. (2013). Autophagy and mitophagy in cellular damage control. Redox Biology, 1(1), 19–23.
pubmed: 23946931 pmcid: 3740586
Parmar, K. M., Nambudiri, V., Dai, G., Larman, H. B., Gimbrone, M. A. Jr., & Garcia-Cardena, G. (2005). Statins exert endothelial atheroprotective effects via the KLF2 transcription factor. Journal Of Biological Chemistry, 280(29), 26714–26719.
pubmed: 15878865
Maity, J., Deb, M., Greene, C., & Das, H. (2020). KLF2 regulates dental pulp-derived stem cell differentiation through the induction of mitophagy and altering mitochondrial metabolism. Redox Biology, 36, 101622.
pubmed: 32777717 pmcid: 7417940
Kondo, T., Matsuoka, A. J., Shimomura, A., Koehler, K. R., Chan, R. J., Miller, J. M., et al. (2011). Wnt signaling promotes neuronal differentiation from mesenchymal stem cells through activation of Tlx3. Stem cells, 29(5), 836–846.
pubmed: 21374761
Lorzadeh, S., Kohan, L., Ghavami, S., & Azarpira, N. (2021). Autophagy and the wnt signaling pathway: A focus on Wnt/β-catenin signaling. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1868(3), 118926.
pubmed: 33316295
Ozgen, S., Krigman, J., Zhang, R., & Sun, N. (2022). Significance of mitochondrial activity in neurogenesis and neurodegenerative diseases. Neural Regeneration Research, 17(4), 741.
pubmed: 34472459
Brunetti, D., Dykstra, W., Le, S., Zink, A., & Prigione, A. (2021). Mitochondria in neurogenesis: Implications for mitochondrial diseases. Stem Cells, 39(10), 1289–1297.
pubmed: 34089537
Kuntz, E. M., Baquero, P., Michie, A. M., Dunn, K., Tardito, S., Holyoake, T. L., et al. (2017). Targeting mitochondrial oxidative phosphorylation eradicates therapy-resistant chronic myeloid leukemia stem cells. Nature medicine, 23(10), 1234–1240.
pubmed: 28920959 pmcid: 5657469
Zheng, X., Boyer, L., Jin, M., Mertens, J., Kim, Y., Ma, L., et al. (2016). Metabolic reprogramming during neuronal differentiation from aerobic glycolysis to neuronal oxidative phosphorylation. elife, 5, e13374.
pubmed: 27282387 pmcid: 4963198
Birket, M. J., Orr, A. L., Gerencser, A. A., Madden, D. T., Vitelli, C., Swistowski, A., et al. (2011). A reduction in ATP demand and mitochondrial activity with neural differentiation of human embryonic stem cells. Journal Of Cell Science, 124(Pt 3), 348–358.
pubmed: 21242311 pmcid: 3021997
Birket, M. J., Orr, A. L., Gerencser, A. A., Madden, D. T., Vitelli, C., Swistowski, A., et al. (2011). A reduction in ATP demand and mitochondrial activity with neural differentiation of human embryonic stem cells. Journal of cell science, 124(3), 348–358.
pubmed: 21242311 pmcid: 3021997
Zhang, C., Skamagki, M., Liu, Z., Ananthanarayanan, A., Zhao, R., Li, H., et al. (2017). Biological significance of the suppression of oxidative phosphorylation in induced pluripotent stem cells. Cell reports, 21(8), 2058–2065.
pubmed: 29166598

Auteurs

Prateeksha Prateeksha (P)

Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, ARB Suite 2116, 1406 South Coulter Street, Amarillo, TX, 79106, USA.

Prathyusha Naidu (P)

Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, ARB Suite 2116, 1406 South Coulter Street, Amarillo, TX, 79106, USA.

Manjusri Das (M)

Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, ARB Suite 2116, 1406 South Coulter Street, Amarillo, TX, 79106, USA.

Derek Barthels (D)

Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, ARB Suite 2116, 1406 South Coulter Street, Amarillo, TX, 79106, USA.

Hiranmoy Das (H)

Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, ARB Suite 2116, 1406 South Coulter Street, Amarillo, TX, 79106, USA. hiranmoy.das@ttuhsc.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH