RNA Sequencing and Bioinformatics Analysis Reveals the Downregulation of DNA Replication Genes by Morindone in Colorectal Cancer Cells.

Anthraquinone Colorectal cancer Morinda citrifolia L. Morindone RNA sequencing

Journal

Applied biochemistry and biotechnology
ISSN: 1559-0291
Titre abrégé: Appl Biochem Biotechnol
Pays: United States
ID NLM: 8208561

Informations de publication

Date de publication:
29 Aug 2023
Historique:
accepted: 16 08 2023
medline: 29 8 2023
pubmed: 29 8 2023
entrez: 29 8 2023
Statut: aheadofprint

Résumé

Morindone, a natural anthraquinone compound, has been reported to have significant pharmacological properties in different cancers. However, its anticancer effects in colorectal cancer (CRC) and the underlying molecular mechanisms remain obscure. In this study, RNA sequencing was used to assess the differentially expressed genes (DEGs) following morindone treatment in two CRC cell lines, HCT116 and HT29 cells. Functional enrichment analysis of overlapping DEGs revealed that negative regulation of cell development from biological processes and the MAPK signalling pathway were the most significant Gene Ontology terms and Kyoto Encyclopaedia of Genes and Genome pathway, respectively. Seven hub genes were identified among the overlapping genes, including MCM5, MCM6, MCM10, GINS2, POLE2, PRIM1, and WDHD1. All hub genes were found downregulated and involved in DNA replication fork. Among these, GINS2 was identified as the most cancer-dependent gene in both cells with better survival outcomes. Validation was performed on seven hub genes with rt-qPCR, and the results were consistent with the RNA sequencing findings. Collectively, this study provides corroboration of the potential therapeutic benefits and suitable pharmacological targets of morindone in the treatment of CRC.

Identifiants

pubmed: 37642925
doi: 10.1007/s12010-023-04690-9
pii: 10.1007/s12010-023-04690-9
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Institut Pengurusan dan Pemantauan Penyelidikan, Universiti Malaya
ID : IIRG003A-2019
Organisme : Institut Pengurusan dan Pemantauan Penyelidikan, Universiti Malaya
ID : IIRG003C-2019

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Références

GLOBOCAN 2020. Available from: https://gco.iarc.fr/ . Accessed 6 June 2022
Aran, V., Victorino, A. P., Thuler, L. C., & Ferreira, C. G. (2016). Colorectal cancer: Epidemiology, disease mechanisms, and interventions to reduce onset and mortality. Clinical Colorectal Cancer, 15, 195–203. https://doi.org/10.1016/j.clcc.2016.02.008
doi: 10.1016/j.clcc.2016.02.008 pubmed: 26964802
Kunzmann, A. T., Coleman, H. G., Huang, W. Y., Kitahara, C. M., Cantwell, M. M., & Berndt, S. I. (2015). Dietary fiber intake and risk of colorectal cancer and incident and recurrent adenoma in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial. American Journal of Clinical Nutrition, 102, 881–890. https://doi.org/10.3945/ajcn.115.113282
doi: 10.3945/ajcn.115.113282 pubmed: 26269366 pmcid: 4588743
Song, M., Wu, K., Meyerhardt, J. A., et al. (2018). Fiber intake and survival after colorectal cancer diagnosis. JAMA Oncology, 4, 71–79. https://doi.org/10.1001/jamaoncol.2017.3684
doi: 10.1001/jamaoncol.2017.3684 pubmed: 29098294 pmcid: 5776713
Niedzwiecki, A., Roomi, M. W., Kalinovsky, T., & Rath, M. (2016). Anticancer efficacy of polyphenols and their combinations. Nutrients, 8, 552. https://doi.org/10.3390/nu8090552
doi: 10.3390/nu8090552 pubmed: 27618095 pmcid: 5037537
Khan, N. T. (2019). Anthraquinones-A naturopathic compound. Journal of New Developments in Chemistry, 2, 25–28. https://doi.org/10.14302/issn.2377-2549.jndc-18-2569
doi: 10.14302/issn.2377-2549.jndc-18-2569
Duval, J., Pecher, V., Poujol, M., & Lesellier, E. (2016). Research advances for the extraction, analysis and uses of anthraquinones: A review. Industrial Crops and Products, 94, 812–833. https://doi.org/10.1016/j.indcrop.2016.09.056
doi: 10.1016/j.indcrop.2016.09.056
Zamakshshari, N. H., Ee, G. C. L., Mah, S. H., Ibrahim, Z., The, S. S., Daud, S. (2017) Cytotoxic Activities of Anthraquinones from Morinda citrifolia towards SNU-1 and LS-174T and K562 Cell Lines. Arch. Nat. Med. Chem. 110, 23823–23848. https://doi.org/10.29011/ANMC-110.000010
Dhingra, S. (2016) Dyeing with Morinda citrifolia: In pursuit of sustainable future. Crosscurrents: Land, Labor, and the Port. Textile Society of America's 15th Biennial Symposium, (pp. 19-23). Savannah. GA
Chee, C. W., Zamakshshari, N. H., Lee, V. S., Abdullah, I., Othman, R., Lee, Y. K., Mohd Hashim, N., & Nor Rashid, N. (2022). Morindone from Morinda citrifolia as a potential antiproliferative agent against colorectal cancer cell lines. PLoS ONE, 17(7), e0270970.  https://doi.org/10.1371/journal.pone.0270970
Kamiya, K., Hamabe, W., Tokuyama, S., et al. (2010). Inhibitory effect of anthraquinones isolated from the Noni (Morinda citrifolia) root on animal A-, B-and Y-families of DNA polymerases and human cancer cell proliferation. Food Chemistry, 118, 725–730. https://doi.org/10.1016/j.foodchem.2009.05.053
doi: 10.1016/j.foodchem.2009.05.053
Bhakta, D., & Siva, R. (2012). Morindone, an anthraquinone, intercalates DNA sans toxicity: A spectroscopic and molecular modeling perspective. Applied Biochemical Biotechnology, 167, 885–896. https://doi.org/10.1007/s12010-012-9744-2
doi: 10.1007/s12010-012-9744-2
Hong, M., Tao, S., Zhang, L., et al. (2020). RNA sequencing: New technologies and applications in cancer research. Journal of Hematology & Oncology, 13, 1–16. https://doi.org/10.1186/s13045-020-01005-x
doi: 10.1186/s13045-020-01005-x
Yang, X. N., Kui, L., Tang, M., et al. (2020). High-throughput transcriptome profiling in drug and biomarker discovery. Frontiers in Genetics, 11, 19. https://doi.org/10.3389/fgene.2020.00019
doi: 10.3389/fgene.2020.00019 pubmed: 32117438 pmcid: 7013098
Kukurba, K. R., & Montgomery, S. B. (2015). (2015) RNA Sequencing and Analysis. Cold Spring Harb. Protoc., 11, 951–969. https://doi.org/10.1101/pdb.top084970
doi: 10.1101/pdb.top084970
Kim, D., Langmead, B., & Salzberg, S. L. (2015). HISAT: A fast spliced aligner with low memory requirements. Nature Methods, 12, 357–360. https://doi.org/10.1038/nmeth.3317
doi: 10.1038/nmeth.3317 pubmed: 25751142 pmcid: 4655817
Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15, 1–21. https://doi.org/10.1186/s13059-014-0550-8
doi: 10.1186/s13059-014-0550-8
Chen, E. Y., Tan, C. M., Kou, Y., et al. (2013). Enrichr: Interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics, 14, 128. https://doi.org/10.1186/1471-2105-14-128
doi: 10.1186/1471-2105-14-128 pubmed: 23586463 pmcid: 3637064
Kanehisa, M., & Goto, S. (2000). KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Research, 28, 27–30. https://doi.org/10.1093/nar/28.1.27
doi: 10.1093/nar/28.1.27 pubmed: 10592173 pmcid: 102409
Szklarczyk, D., Gable, A. L., Nastou, K. C., et al. (2021). The STRING database in 2021: Customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Research, 49, D605–D612. https://doi.org/10.1093/nar/gkaa1074
doi: 10.1093/nar/gkaa1074 pubmed: 33237311
Shannon, P., Markiel, A., Ozier, O., et al. (2003). Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research, 13, 2498–2504. https://doi.org/10.1101/gr.1239303
doi: 10.1101/gr.1239303 pubmed: 14597658 pmcid: 403769
Bozhilova, L. V., Whitmore, A. V., Wray, J., Reinert, G., & Deane, C. M. (2019). Measuring rank robustness in scored protein interaction networks. BMC Bioinformatics, 20, 1–14. https://doi.org/10.1186/s12859-019-3036-6
doi: 10.1186/s12859-019-3036-6
Bader, G. D., & Hogue, C. W. (2003). An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics, 4, 1–27. https://doi.org/10.1186/1471-2105-4-2
doi: 10.1186/1471-2105-4-2
Chin, C. H., Chen, S. H., Wu, H. H., Ho, C. W., Ko, M. T., & Lin, C. Y. (2014). CytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Systems Biology, 8, 1–7. https://doi.org/10.1186/1752-0509-8-S4-S11
doi: 10.1186/1752-0509-8-S4-S11
Scardoni, G., Petterlini, M., & Laudanna, C. (2009). Analyzing biological network parameters with CentiScaPe. Bioinformatics, 25, 2857–2859. https://doi.org/10.1093/bioinformatics/btp517
doi: 10.1093/bioinformatics/btp517 pubmed: 19729372 pmcid: 2781755
Tang, Z. F., Li, C. W., Kang, B. X., Gao, G., Li, C., & Zhang, Z. M. (2017). GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Research, 45, W98–W102. https://doi.org/10.1093/nar/gkx247
doi: 10.1093/nar/gkx247 pubmed: 28407145 pmcid: 5570223
Tsherniak, A., Vazquez, F., Montgomery, P. G., et al. (2017). Defining a cancer dependency map. Cell, 170, 564–576. https://doi.org/10.1016/j.cell.2017.06.010
doi: 10.1016/j.cell.2017.06.010 pubmed: 28753430 pmcid: 5667678
Meyers, R. M., Bryan, J. G., McFarland, J. M., et al. (2017). Computational correction of copy number effect improves specificity of CRISPR–Cas9 essentiality screens in cancer cells. Nature Genetics, 49, 1779–1784. https://doi.org/10.1038/ng.3984
doi: 10.1038/ng.3984 pubmed: 29083409 pmcid: 5709193
McFarland, J. M., Ho, Z. V., Kugener, G., et al. (2018). Improved estimation of cancer dependencies from large-scale RNAi screens using model-based normalization and data integration. Nature Communications, 9, 1–13. https://doi.org/10.1038/s41467-018-06916-5
doi: 10.1038/s41467-018-06916-5
Li, Y. H., Niu, Y. B., Sun, Y., et al. (2015). Role of phytochemicals in colorectal cancer prevention. World Journal of Gastroenterology, 21, 9262–9272. https://doi.org/10.3748/wjg.v21.i31.9262
doi: 10.3748/wjg.v21.i31.9262 pubmed: 26309353 pmcid: 4541379
Siddamurthi, S., Gutti, G., Jana, S., Kumar, A., & Singh, S. K. (2020). Anthraquinone: A promising scaffold for the discovery and development of therapeutic agents in cancer therapy. Future Medicinal Chemistry, 12, 1037–1069. https://doi.org/10.4155/fmc-2019-0198
doi: 10.4155/fmc-2019-0198 pubmed: 32349522
Palchaudhuri, R., & Hergenrother, P. J. (2007). DNA as a target for anticancer compounds: Methods to determine the mode of binding and the mechanism of action. Current Opinion in Biotechnology, 18, 497–503. https://doi.org/10.1016/j.copbio.2007.09.006
doi: 10.1016/j.copbio.2007.09.006 pubmed: 17988854
Lerman, L. S. (1961). Structural considerations in the interaction of DNA and acridines. American Journal of Molecular Biology, 3(1), 18–30. https://doi.org/10.1016/S0022-2836(61)80004-1
doi: 10.1016/S0022-2836(61)80004-1
Hurley, L. H. (2002). DNA and its associated processes as targets for cancer therapy. Nature Reviews Cancer, 2, 188–200. https://doi.org/10.1038/nrc749
doi: 10.1038/nrc749 pubmed: 11990855
Vetro, A., Savasta, S., Russo Raucci, A., et al. (2017). MCM5: A new actor in the link between DNA replication and Meier-Gorlin syndrome. European Journal of Human Genetics, 25, 646–650. https://doi.org/10.1038/ejhg.2017.5
doi: 10.1038/ejhg.2017.5 pubmed: 28198391 pmcid: 5437912
Onesti, S., & MacNeill, S. A. (2013). Structure and evolutionary origins of the CMG complex. Chromosoma, 122, 47–53. https://doi.org/10.1007/s00412-013-0397-x
doi: 10.1007/s00412-013-0397-x pubmed: 23412083
Thu, Y. M., & Bielinsky, A. K. (2014). MCM10: One tool for all—Integrity, maintenance and damage control. Seminars in Cell & Developmental Biology, 30, 121–130. https://doi.org/10.1016/j.semcdb.2014.03.017
doi: 10.1016/j.semcdb.2014.03.017
Pillaire, M. J., Selves, J., Gordien, K., et al. (2010). A ‘DNA replication’signature of progression and negative outcome in colorectal cancer. Oncogene, 29, 876–887. https://doi.org/10.1038/onc.2009.378
doi: 10.1038/onc.2009.378 pubmed: 19901968
Liao, X. W., Liu, X. G., Yang, C. K., et al. (2018). Distinct diagnostic and prognostic values of minichromosome maintenance gene expression in patients with hepatocellular carcinoma. Journal of Cancer, 9, 2357–2373. https://doi.org/10.7150/jca.25221
doi: 10.7150/jca.25221 pubmed: 30026832 pmcid: 6036720
Wojnar, A., Pula, B., Piotrowska, A., et al. (2011). Correlation of intensity of MT-I/II expression with Ki-67 and MCM-2 proteins in invasive ductal breast carcinoma. Anticancer Research, 31, 3027–3033.
pubmed: 21868554
Zhong, H. B., Chen, B., Neves, H., et al. (2017). Expression of minichromosome maintenance genes in renal cell carcinoma. Cancer Manage Res., 9, 637–647. https://doi.org/10.2147/CMAR.S146528
doi: 10.2147/CMAR.S146528
Gambus, A., Jones, R. C., Sanchez-Diaz, A., et al. (2006). GINS maintains association of Cdc45 with MCM in replisome progression complexes at eukaryotic DNA replication forks. Nature Cell Biology, 8, 358–366. https://doi.org/10.1038/ncb1382
doi: 10.1038/ncb1382 pubmed: 16531994
Labib, K., & Gambus, A. (2007). A key role for the GINS complex at DNA replication forks. Trends in Cell Biology, 17, 271–278. https://doi.org/10.1016/j.tcb.2007.04.002
doi: 10.1016/j.tcb.2007.04.002 pubmed: 17467990
Huang, L., Chen, S., Fan, H., Ji, D., Chen, C., & Sheng, W. (2021). GINS2 promotes EMT in pancreatic cancer via specifically stimulating ERK/MAPK signaling. Cancer Gene Therapy, 28, 839–849. https://doi.org/10.1038/s41417-020-0206-7
doi: 10.1038/s41417-020-0206-7 pubmed: 32747685
Hu, H., Ye, L., & Liu, Z. (2022). GINS2 regulates the proliferation and apoptosis of colon cancer cells through PTP4A1. Molecular Medicine Reports, 25, 1–9. https://doi.org/10.3892/mmr.2022.12633
doi: 10.3892/mmr.2022.12633
Hao, Y. Q., Liu, K. W., Zhang, X., et al. (2021). GINS2 was regulated by lncRNA XIST/miR-23a-3p to mediate proliferation and apoptosis in A375 cells. Molecular and Cellular Biochemistry, 476, 1455–1465. https://doi.org/10.1007/s11010-020-04007-y
doi: 10.1007/s11010-020-04007-y pubmed: 33389496
Sun, D., Zong, Y., Cheng, J., Li, Z., Xing, L., & Yu, J. (2021). GINS2 attenuates the development of lung cancer by inhibiting the STAT signaling pathway. Journal of Cancer, 12, 99–100. https://doi.org/10.7150/jca.46744
doi: 10.7150/jca.46744 pubmed: 33391406 pmcid: 7738824
Bebenek, K., & Kunkel, T. A. (2004). Functions of DNA polymerases. Advances in Protein Chemistry, 69, 137–165. https://doi.org/10.1016/S0065-3233(04)69005-X
doi: 10.1016/S0065-3233(04)69005-X pubmed: 15588842
Chubb, D., Broderick, P., Dobbins, S. E., et al. (2016). Rare disruptive mutations and their contribution to the heritable risk of colorectal cancer. Nature Communications, 7, 1–7. https://doi.org/10.1038/ncomms11883
doi: 10.1038/ncomms11883
Spier, I., Holzapfel, S., Altmüller, J., et al. (2015). Frequency and phenotypic spectrum of germline mutations in POLE and seven other polymerase genes in 266 patients with colorectal adenomas and carcinomas. International Journal of Cancer, 137, 320–331. https://doi.org/10.1002/ijc.29396
doi: 10.1002/ijc.29396 pubmed: 25529843
Frugoni, F., Dobbs, K., Felgentreff, K., et al. (2016). A novel mutation in the POLE2 gene causing combined immunodeficiency. The Journal of Allergy and Clinical Immunology, 137, 635–638. https://doi.org/10.1016/j.jaci.2015.06.049
doi: 10.1016/j.jaci.2015.06.049 pubmed: 26365386
Kilkenny, M. L., Longo, M. A., Perera, R. L., & Pellegrini, L. (2013). Structures of human primase reveal design of nucleotide elongation site and mode of Pol α tethering. Proc Nat Acad Sci USA, 110, 15961–15966. https://doi.org/10.1073/pnas.1311185110
doi: 10.1073/pnas.1311185110 pubmed: 24043831 pmcid: 3791718
Bailey, L. J., Bianchi, J., Hégarat, N., Hochegger, H., & Doherty, A. J. (2016). PrimPol-deficient cells exhibit a pronounced G2 checkpoint response following UV damage. Cell Cycle, 15, 908–918. https://doi.org/10.1080/15384101.2015.1128597
doi: 10.1080/15384101.2015.1128597 pubmed: 26694751
Lee, W. H., Chen, L. C., Lee, C. J., et al. (2019). DNA primase polypeptide 1 (PRIM1) involves in estrogen-induced breast cancer formation through activation of the G2/M cell cycle checkpoint. International Journal of Cancer, 144, 615–630. https://doi.org/10.1002/ijc.31788
doi: 10.1002/ijc.31788 pubmed: 30097999
Parry, D. A., Tamayo-Orrego, L., Carroll, P., et al. (2020). PRIM1 deficiency causes a distinctive primordial dwarfism syndrome. Genes & Development, 34, 1520–1533. https://doi.org/10.1101/gad.340190.120
doi: 10.1101/gad.340190.120
Guan, C., Li, J., Sun, D., Liu, Y., & Liang, H. (2017). The structure and polymerase-recognition mechanism of the crucial adaptor protein AND-1 in the human replisome. J Bio Chem., 292, 9627–9636. https://doi.org/10.1074/jbc.M116.758524
doi: 10.1074/jbc.M116.758524
Abe, T., Kawasumi, R., Giannattasio, M., et al. (2018). AND-1 fork protection function prevents fork resection and is essential for proliferation. Nature Communications, 9, 1–13. https://doi.org/10.1038/s41467-018-05586-7
doi: 10.1038/s41467-018-05586-7
Morrison, D. K. (2012). MAP kinase pathways. Cold Spring Harbor Protocols, 4(11), 1–5. https://doi.org/10.1101/cshperspect.a011254
doi: 10.1101/cshperspect.a011254
Fang, J. Y., & Richardson, B. C. (2005). The MAPK signalling pathways and colorectal cancer. The lancet Oncology, 6, 322–327. https://doi.org/10.1016/S1470-2045(05)70168-6
doi: 10.1016/S1470-2045(05)70168-6 pubmed: 15863380
Drosten, M., & Barbacid, M. (2020). Targeting the MAPK pathway in KRAS-driven tumors. Cancer Cell, 37, 543–550. https://doi.org/10.1016/j.ccell.2020.03.013
doi: 10.1016/j.ccell.2020.03.013 pubmed: 32289276

Auteurs

Cheok Wui Chee (CW)

Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.

Najihah Mohd Hashim (N)

Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
Centre for Natural Products Research and Drug Discovery, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
Drug Design and Development Research Group, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.

Iskandar Abdullah (I)

Drug Design and Development Research Group, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
Department of Chemistry, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.

Nurshamimi Nor Rashid (N)

Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia. nurshamimi@um.edu.my.
Centre for Natural Products Research and Drug Discovery, Universiti Malaya, 50603, Kuala Lumpur, Malaysia. nurshamimi@um.edu.my.
Drug Design and Development Research Group, Universiti Malaya, 50603, Kuala Lumpur, Malaysia. nurshamimi@um.edu.my.

Classifications MeSH