Hydrogen and deuterium charging of lifted-out specimens for atom probe tomography.
atom probe tomography
cryogenic transfer workflows
hydrogen embrittlement
hydrogen trapping sites
twinning induced plasticity steel
Journal
Open research Europe
ISSN: 2732-5121
Titre abrégé: Open Res Eur
Pays: Belgium
ID NLM: 9918230081006676
Informations de publication
Date de publication:
2021
2021
Historique:
accepted:
17
02
2022
medline:
21
2
2022
pubmed:
21
2
2022
entrez:
30
8
2023
Statut:
epublish
Résumé
Hydrogen embrittlement can cause a dramatic deterioration of the mechanical properties of high-strength metallic materials. Despite decades of experimental and modelling studies, the exact underlying mechanisms behind hydrogen embrittlement remain elusive. To unlock understanding of the mechanism and thereby help mitigate the influence of hydrogen and the associated embrittlement, it is essential to examine the interactions of hydrogen with structural defects such as grain boundaries, dislocations and stacking faults. Atom probe tomography (APT) can, in principle, analyse hydrogen located specifically at such microstructural features but faces strong challenges when it comes to charging specimens with hydrogen or deuterium. Here, we describe three different workflows enabling hydrogen/deuterium charging of site-specific APT specimens: namely cathodic, plasma and gas charging. All the experiments in the current study have been performed on a model twinning induced plasticity steel alloy. We discuss in detail the caveats of the different approaches in order to help future research efforts and facilitate further studies of hydrogen in metals. Our study demonstrates successful cathodic and gas charging, with the latter being more promising for the analysis of the high-strength steels at the core of our work.
Identifiants
pubmed: 37645172
doi: 10.12688/openreseurope.14176.2
pmc: PMC10445872
doi:
Types de publication
Journal Article
Langues
eng
Pagination
122Informations de copyright
Copyright: © 2022 Khanchandani H et al.
Déclaration de conflit d'intérêts
No competing interests were disclosed.
Références
Science. 2017 Mar 17;355(6330):1196-1199
pubmed: 28302855
PLoS One. 2022 Feb 9;17(2):e0262543
pubmed: 35139091
PLoS One. 2021 Jan 19;16(1):e0245555
pubmed: 33465106
Ultramicroscopy. 2013 Sep;132:285-9
pubmed: 23489909
Sci Rep. 2020 Nov 20;10(1):20271
pubmed: 33219263
Sci Adv. 2020 Dec 4;6(49):
pubmed: 33277259
J Phys Chem Lett. 2019 Feb 7;10(3):581-588
pubmed: 30673242
Talanta. 2015 May;136:108-13
pubmed: 25702992
Microsc Res Tech. 2012 Apr;75(4):484-91
pubmed: 21956865
Adv Struct Chem Imaging. 2017;3(1):10
pubmed: 28280683
Nat Mater. 2021 Dec;20(12):1629-1634
pubmed: 34239084
Ultramicroscopy. 2018 Jun;189:54-60
pubmed: 29614395
PLoS One. 2018 Dec 21;13(12):e0209211
pubmed: 30576351
Microsc Microanal. 2019 Apr;25(2):481-488
pubmed: 30853034
Ultramicroscopy. 2015 Jun;153:32-9
pubmed: 25723104
Science. 2020 Jan 10;367(6474):171-175
pubmed: 31919217
Microsc Microanal. 2017 Apr;23(2):194-209
pubmed: 28162119
J Mater Sci. 2018;53(9):6251-6290
pubmed: 31258179
Nat Commun. 2019 Feb 26;10(1):942
pubmed: 30808943
Mater Today Adv. 2020 Sep;7:
pubmed: 33103106
Ultramicroscopy. 2009 Apr;109(5):631-6
pubmed: 19131167
Ultramicroscopy. 2007 Feb-Mar;107(2-3):131-9
pubmed: 16938398