Effect of three different remineralising agents on prevention against acidic erosion of primary teeth: an in vitro study.
Erosion
In vitro
Prevention
Primary teeth
Self-assembling peptide
Journal
European archives of paediatric dentistry : official journal of the European Academy of Paediatric Dentistry
ISSN: 1996-9805
Titre abrégé: Eur Arch Paediatr Dent
Pays: England
ID NLM: 101277157
Informations de publication
Date de publication:
Oct 2023
Oct 2023
Historique:
received:
22
11
2022
accepted:
15
05
2023
medline:
27
10
2023
pubmed:
30
8
2023
entrez:
30
8
2023
Statut:
ppublish
Résumé
This study aimed to evaluate and compare the protective effect of fluoride varnish (Enamelast™, Ultradent Inc., Cologne, Germany), casein phosphopeptide-amorphous calcium phosphate fluoride/CPP-ACPF (MI Paste Plus, GC Corp., Tokyo, Japan) and self-assembling P Forty primary anterior teeth were randomly assigned to four groups (n = 10): group 1: control, group 2: fluoride varnish, group 3: CPP-ACPF and group 4: self-assembling P All experimental groups showed superior results than the control group regarding microhardness, surface roughness, and substance loss. The fluoride varnish group showed significantly favourable results in microhardness change. There was no significant difference between the experimental groups regarding surface roughness and enamel loss measurements. 5% NaF fluoride varnish, CPP-ACPF and self-assembling P
Identifiants
pubmed: 37646903
doi: 10.1007/s40368-023-00834-x
pii: 10.1007/s40368-023-00834-x
doi:
Substances chimiques
Caseins
0
Fluorides
Q80VPU408O
Fluorides, Topical
0
Peptides
0
Saliva, Artificial
0
Types de publication
Journal Article
Randomized Controlled Trial
Langues
eng
Sous-ensembles de citation
IM
Pagination
651-659Informations de copyright
© 2023. The Author(s), under exclusive licence to European Academy of Paediatric Dentistry.
Références
Abou Neel EA, Aljabo A, Strange A, Ibrahim S, Coathup M, Young AM, Bozec L, Mudera V. Demineralization-remineralization dynamics in teeth and bone. Int J Nanomed. 2016. https://doi.org/10.2147/IJN.S107624 .
doi: 10.2147/IJN.S107624
Alessandri-Bonetti G, D’Antò V, Stipa C, Rongo R, Incerti-Parenti S, Michelotti A. Dentoskeletal effects of oral appliance wear in obstructive sleep apnoea and snoring patients. Eur J Orthod. 2017. https://doi.org/10.1093/ejo/cjw078 .
doi: 10.1093/ejo/cjw078
pubmed: 27932405
Alexandria AK, Vieira TI, Pithon MM, da Silva Fidalgo TK, Fonseca-Gonçalves A, Valença AM, Cabral LM, Maia LC. In vitro enamel erosion and abrasion-inhibiting effect of different fluoride varnishes. Arch Oral Biol. 2017. https://doi.org/10.1016/j.archoralbio.2017.01.010 .
doi: 10.1016/j.archoralbio.2017.01.010
pubmed: 28167334
Attin T, Becker K, Wiedemeier DB, Schmidlin PR, Wegehaupt FJ. Anti-erosive effect of a self-assembling peptide gel. Swiss Dent J. 2017. https://doi.org/10.5167/uzh-143887 .
doi: 10.5167/uzh-143887
pubmed: 29228763
Bud ES, Bocanet VI, Muntean MH, Vlasa A, Păcurar M, Zetu IN, Soporan BI, Bud A. Extra-oral three-dimensional (3D) scanning evaluation of three different impression materials—an in vitro study. Polymers. 2022. https://doi.org/10.1111/cid.12495 .
doi: 10.1111/cid.12495
pubmed: 36080753
pmcid: 9459976
Ceci M, Mirando M, Beltrami R, Chiesa M, Colombo M, Poggio C. Effect of self-assembling peptide P11–4 on enamel erosion: AFM and SEM studies. Scanning. 2016. https://doi.org/10.1002/sca.21276 .
doi: 10.1002/sca.21276
pubmed: 26435410
Field J, Waterhouse P, German M. Quantifying and qualifying surface changes on dental hard tissues in vitro. J Dent. 2010. https://doi.org/10.1016/j.jdent.2010.01.002 .
doi: 10.1016/j.jdent.2010.01.002
pubmed: 20079800
Fujii M, Kitasako Y, Sadr A, Tagami J. Roughness and pH changes of enamel surface induced by soft drinks in vitro-applications of stylus profilometry, focus variation 3D scanning microscopy and micro pH sensor. Dent Mater J. 2011. https://doi.org/10.4012/dmj.2010-204 .
doi: 10.4012/dmj.2010-204
pubmed: 21778608
Ganss C, Schlueter N, Klimek J. Retention of KOH-soluble fluoride on enamel and dentine under erosive conditions—a comparison of in vitro and in situ results. Arch Oral Biol. 2007. https://doi.org/10.1016/j.archoralbio.2006.07.004 .
doi: 10.1016/j.archoralbio.2006.07.004
pubmed: 17049481
Hannig M. The protective nature of the salivary pellicle. Int Dent J. 2002;52:417–23.
doi: 10.1111/j.1875-595X.2002.tb00731.x
Jayarajan J, Janardhanam P, Jayakumar P, Deepika. Efficacy of CPP-ACP and CPP-ACPF on enamel remineralization—an in vitro study using scanning electron microscope and DIAGNOdent
doi: 10.4103/0970-9290.80001
pubmed: 21525682
Johansson AK, Sorvari R, Birkhed D, Meurman JH. Dental erosion in deciduous teeth—an in vivo and in vitro study. J Dent. 2001. https://doi.org/10.1016/S0300-5712(01)00029-X .
doi: 10.1016/S0300-5712(01)00029-X
pubmed: 11472805
Lione R, Huanca Ghislanzoni LT, Defraia E, Franchi L, Cozza P. Bonded versus banded rapid palatal expander followed by facial mask therapy: analysis on digital dental casts. Eur J Orthod. 2016. https://doi.org/10.1093/ejo/cjv038 .
doi: 10.1093/ejo/cjv038
pubmed: 26070923
Lippert F. Fluoride release from fluoride varnishes under acidic conditions. J Clin Pediatr Dent. 2014. https://doi.org/10.17796/jcpd.39.1.b45805v0v17407gl .
doi: 10.17796/jcpd.39.1.b45805v0v17407gl
pubmed: 25631724
Maden EA, Acar Ö, Altun C, Polat GG. The effect of casein phosphopeptide-Amorf calcium phosphate and acidulated phosphate fluoride gel on dental erosion in primary teeth: an in vitro study. J Clin Pediatr Dent. 2017. https://doi.org/10.17796/1053-4628-41.4.275 .
doi: 10.17796/1053-4628-41.4.275
pubmed: 28650787
Manton DJ, Cai F, Yuan Y, Walker GD, Cochrane NJ, Reynolds C, Brearley-Messer LJ, Reynolds EC. Effect of casein phosphopeptide-amorphous calcium phosphate added to acidic beverages on enamel erosion in vitro. Aust Dent J. 2010. https://doi.org/10.1111/j.1834-7819.2010.01234.x .
doi: 10.1111/j.1834-7819.2010.01234.x
pubmed: 20887514
Maude S, Ingham E, Aggeli A. Biomimetic self-assembling peptides as scaffolds for soft tissue engineering. Nanomedicine (lond). 2013. https://doi.org/10.2217/nnm.13.65 .
doi: 10.2217/nnm.13.65
pubmed: 23656267
Moazzez R, Bartlett D, Anggiansah A. Dental erosion, gastro-oesophageal reflux disease and saliva: how are they related? J Dent. 2004. https://doi.org/10.1016/j.jdent.2004.03.004 .
doi: 10.1016/j.jdent.2004.03.004
pubmed: 15240067
Nekrashevych Y, Stösser L. Protective influence of experimentally formed salivary pellicle on enamel erosion. An in vitro study. Caries Res. 2003. https://doi.org/10.1159/000070449 .
doi: 10.1159/000070449
pubmed: 12740548
Pindborg JJ. Pathology of the dental hard tissues. Philadelphia: Saunders; 1970.
Rallan M, Chaudhary S, Goswami M, Sinha A, Arora R, Kishor A. Effect of various remineralising agents on human eroded enamel of primary teeth. Eur Arch Paediatr Dent. 2013. https://doi.org/10.1007/s40368-013-0085-9 .
doi: 10.1007/s40368-013-0085-9
pubmed: 24068490
Reynolds EC. Remineralization of enamel subsurface lesions by casein phosphopeptide-stabilized calcium phosphate solutions. J Dent Res. 1997. https://doi.org/10.1177/00220345970760091101 .
doi: 10.1177/00220345970760091101
pubmed: 9294493
Sar Sancakli H, Austin RS, Al-Saqabi F, Moazzez R, Bartlett D. The influence of varnish and high fluoride on erosion and abrasion in a laboratory investigation. Aust Dent J. 2015. https://doi.org/10.1111/adj.12271 .
doi: 10.1111/adj.12271
pubmed: 25721276
Soares LE, De Carvalho Filho AC. Protective effect of fluoride varnish and fluoride gel on enamel erosion: roughness, SEM-EDS, and µ-EDXRF studies. Microsc Res Tech. 2015. https://doi.org/10.1002/jemt.22467 .
doi: 10.1002/jemt.22467
pubmed: 25626779
Soares GG, Magalhães PA, Fonseca ABM, Tostes MA, Silva EMD, Coutinho TCL. Preventive effect of CPP-ACPF paste and fluoride toothpastes against erosion and erosion plus abrasion in vitro—a 3D profilometric analysis. Oral Health Prev Dent. 2017a. https://doi.org/10.3290/j.ohpd.a38160 .
doi: 10.3290/j.ohpd.a38160
pubmed: 28530007
Soares R, De Ataide IN, Fernandes M, Lambor R. Assessment of enamel remineralisation after treatment with four different remineralising agents: a scanning electron microscopy (SEM) study. J Clin Diagn Res. 2017b. https://doi.org/10.7860/JCDR/2017/23594.9758 .
doi: 10.7860/JCDR/2017/23594.9758
pubmed: 28571281
pmcid: 5449906
Somani R, Jaidka S, Singh DJ, Arora V. Remineralizing potential of various agents on dental erosion. J Oral Biol Craniofac Res. 2014. https://doi.org/10.1016/j.jobcr.2014.05.001 .
doi: 10.1016/j.jobcr.2014.05.001
pubmed: 25737926
pmcid: 4252642
Sorvari R, Meurman JH, Alakuijala P, Frank RM. Effect of fluoride varnish and solution on enamel erosion in vitro. Caries Res. 1994. https://doi.org/10.1159/000261970 .
doi: 10.1159/000261970
pubmed: 8069877
Taji S, Seow WK. A literature review of dental erosion in children. Aust Dent J. 2010. https://doi.org/10.1111/j.1834-7819.2010.01255.x .
doi: 10.1111/j.1834-7819.2010.01255.x
pubmed: 21133936
Üstün N, Güven Y. Effect of three different remineralizing agents on artificial erosive lesions of primary teeth. Aust Dent J. 2022. https://doi.org/10.1111/adj.12922 .
doi: 10.1111/adj.12922
pubmed: 35694835
Wierichs RJ, Carvalho TS, Wolf TG. Efficacy of a self-assembling peptide to remineralize initial caries lesions—a systematic review and meta-analysis. J Dent. 2021. https://doi.org/10.1016/j.jdent.2021.103652 .
doi: 10.1016/j.jdent.2021.103652
pubmed: 34174349
Yilmaz N, Baltaci E, Baygin O, Tüzüner T, Ozkaya S, Canakci A. Effect of the usage of Er, Cr:YSGG laser with and without different remineralization agents on the enamel erosion of primary teeth. Lasers Med Sci. 2020. https://doi.org/10.1007/s10103-020-03015-0 .
doi: 10.1007/s10103-020-03015-0
pubmed: 32613417
Zawaideh FI, Owais AI, Mushtaha S. Effect of CPP-ACP or a potassium nitrate sodium fluoride dentifrice on enamel erosion prevention. JOCPD. 2017;41(2):135–40.
doi: 10.17796/1053-4628-41.2.135
pubmed: 28288296