Generation of an induced pluripotent stem cell line from a patient with epileptic encephalopathy caused by the CYFIP2 R87C variant.

CYFIP2 variant Epileptic encephalopathy iPSC

Journal

Human cell
ISSN: 1749-0774
Titre abrégé: Hum Cell
Pays: Japan
ID NLM: 8912329

Informations de publication

Date de publication:
Nov 2023
Historique:
received: 15 05 2023
accepted: 21 08 2023
pubmed: 30 8 2023
medline: 30 8 2023
entrez: 30 8 2023
Statut: ppublish

Résumé

Induced pluripotent stem cells (iPSCs) opened the possibility to use patient cells as a model for several diseases. iPSCs can be reprogrammed from somatic cells collected in a non-invasive way, and then differentiated into any other cell type, while maintaining the donor´s genetic background. CYFIP2 variants were associated with the onset of an early form of epileptic encephalopathy. Studies with patients showed that the R87C variant seems to be one of the variants that causes more severe disease, however, to date there are no studies with a human cell model that allows investigation of the neuronal phenotype of the R87C variant. Here, we generated an iPSC line from a patient with epileptic encephalopathy caused by the CYFIP2 R87C variant. We obtained iPSC clones by reprogramming urinary progenitor cells from a female patient. The generated iPSC line presented a pluripotent stem cell morphology, normal karyotype, expressed pluripotency markers and could be differentiated into the three germ layers. In further studies, this cell line could be used as model for epileptic encephalopathy disease and drug screening studies.

Identifiants

pubmed: 37646972
doi: 10.1007/s13577-023-00978-4
pii: 10.1007/s13577-023-00978-4
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

2237-2246

Subventions

Organisme : Conselho Nacional de Desenvolvimento Científico e Tecnológico
ID : PROEP/ICC 442324/2019-7
Organisme : Conselho Nacional de Desenvolvimento Científico e Tecnológico
ID : Scholarship

Informations de copyright

© 2023. The Author(s) under exclusive licence to Japan Human Cell Society.

Références

Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;2:663–76.
doi: 10.1016/j.cell.2006.07.024
Mora C, Serzanti M, Consiglio A, Memo M, Dell’era P,. Clinical potentials of human pluripotent stem cells. Cell Biol Toxicol. 2017;33:351–60.
doi: 10.1007/s10565-017-9384-y pubmed: 28176010
Pellock JM, Hrachovy R, Shinnar S, Baram TZ, Bettis D, Dlugos DJ, et al. Infantile spasms: a U.S. consensus report. Epilepsia. 2010;51:2175–89.
doi: 10.1111/j.1528-1167.2010.02657.x pubmed: 20608959
Nakashima M, Kato M, Aoto K, Shiina M, Belal H, Mukaida S, et al. De novo hotspot variants in CYFIP2 cause early-onset epileptic encephalopathy. Ann Neurol. 2018;83:794–806.
doi: 10.1002/ana.25208 pubmed: 29534297
Konietzny A, Bär J, Mikhaylova M. Dendritic actin cytoskeleton: structure, functions, and regulations. Front Cell Neurosci. 2017;11:1–10.
doi: 10.3389/fncel.2017.00147
Cory GOC, Ridley AJ. Braking WAVEs. Nature. 2002;418:732–3.
doi: 10.1038/418732a pubmed: 12181548
Derivery E, Lombard B, Loew D, Gautreau A. The wave complex is intrinsically inactive. Cell Motil Cytoskelet. 2009;66:777–90.
doi: 10.1002/cm.20342
Schenck A, Bardoni B, Moro A, Bagni C, Mandel JL. A highly conserved protein family interacting with the fragile X mental retardation protein (FMRP) and displaying selective interactions with FMRP-related proteins FXR1P and FXR2P. Proc Natl Acad Sci USA. 2001;98:8844–9.
doi: 10.1073/pnas.151231598 pubmed: 11438699 pmcid: 37523
Begemann A, Sticht H, Begtrup A, Vitobello A, Faivre L, Banka S, et al. New insights into the clinical and molecular spectrum of the novel CYFIP2-related neurodevelopmental disorder and impairment of the WRC-mediated actin dynamics. Genet Med. 2021;23:543–54.
doi: 10.1038/s41436-020-01011-x pubmed: 33149277
Zhang Y, Kang HR, Han K. Differential cell-type-expression of CYFIP1 and CYFIP2 in the adult mouse hippocampus. Anim Cells Syst (Seoul). 2019;23:380–3.
doi: 10.1080/19768354.2019.1696406 pubmed: 31853374
Pathania M, Davenport EC, Muir J, Sheehan DF, López-Doménech G, Kittler JT. The autism and schizophrenia associated gene CYFIP1 is critical for the maintenance of dendritic complexity and the stabilization of mature spines. Transl Psychiatry. 2014;4:1–11.
Kang M, Zhang Y, Kang HR, Kim S, Yi Y, Lee S, et al. The CYFIP2 p.Arg87Cys causes neurological defects and degradation of CYFIP2 running. Ann Neurol. 2023;93:155–63.
doi: 10.1002/ana.26535 pubmed: 36251395
Steichen C, Si-Tayeb K, Wulkan F, Crestani T, Rosas G, Dariolli R, et al. Human induced pluripotent stem (hiPS) cells from urine samples: a non-integrative and feeder-free reprogramming strategy. Curr Protoc Hum Genet. 2017;2017:21.7.1-21.7.22.
Zhou T, Benda C, Dunzinger S, Huang Y, Ho JC, Yang J, et al. Generation of human induced pluripotent stem cells from urine samples. Nat Protoc. 2012;7:2080–9.
doi: 10.1038/nprot.2012.115 pubmed: 23138349
Moralli D, Yusuf M, Mandegar MA, Khoja S, Monaco ZL, Volpi EV. An improved technique for chromosomal analysis of human ES and iPS cells. Stem Cell Rev Rep. 2011;7:471–7.
doi: 10.1007/s12015-010-9224-4 pubmed: 21188651
Ahn LY, Coatti GC, Liu J, Gumus E, Schaffer AE, Miranda HC. An epilepsy-associated ACTL6B variant captures neuronal hyperexcitability in a human induced pluripotent stem cell model. J Neurosci Res. 2021;99:110–23.
doi: 10.1002/jnr.24747 pubmed: 33141462
Lee Y, Zhang Y, Kang H, Bang G, Kim Y, Kang HR, et al. Epilepsy- and intellectual disability-associated CYFIP2 interacts with both actin regulators and RNA-binding proteins in the neonatal mouse forebrain. Biochem Biophys Res Commun. 2020;529:1–6.
doi: 10.1016/j.bbrc.2020.05.221 pubmed: 32560809
Zhang Y, Kang H, Lee Y, Kim Y, Lee B, Kim JY, et al. Smaller body size, early postnatal lethality, and cortical extracellular matrix-related gene expression changes of Cyfip2-null embryonic mice. Front Mol Neurosci. 2019;11:1–5.
doi: 10.3389/fnmol.2018.00482
Lee SH, Zhang Y, Park J, Kim B, Kim Y, Lee SH, et al. Haploinsufficiency of Cyfip2 causes lithium-responsive prefrontal dysfunction. Ann Neurol. 2020;88:526–43.
doi: 10.1002/ana.25827 pubmed: 32562430
Zhou T, Benda C, Duzinger S, Huang Y, Li X, Li Y, et al. Generation of induced pluripotent stem cells from urine. J Am Soc Nephrol. 2011;22:1221–8.
doi: 10.1681/ASN.2011010106 pubmed: 21636641 pmcid: 3137570
Si-Tayeb K, Idriss S, Champon B, Caillaud A, Pichelin M, Arnaud L, et al. Urine-sample-derived human induced pluripotent stem cells as a model to study PCSK9-mediated autosomal dominant hypercholesterolemia. DMM Dis Models Mech [Internet]. 2016;9:81–90.
Bharadwaj S, Liu G, Shi Y, Wu R, Yang B, He T, et al. Multipotential differentiation of human urine-derived stem cells: potential for therapeutic applications in urology. Stem Cells. 2013;31:1840–56.
doi: 10.1002/stem.1424 pubmed: 23666768
Cheng L, Lei Q, Yin C, Wang HY, Jin K, Xiang M. Generation of urine cell-derived non-integrative human iPSCs and iNSCs: a step-by-step optimized protocol. Front Mol Neurosci. 2017;10:1–8.
doi: 10.3389/fnmol.2017.00348 pubmed: 28167898 pmcid: 5253351
Wezel F, Pearson J, Kirkwood LA, Southgate J. Differential expression of oct4 variants and pseudogenes in normal urothelium and urothelial cancer. Am J Pathol. 2013;183:1128–36.
doi: 10.1016/j.ajpath.2013.06.025 pubmed: 23933063
Atlasi Y, Mowla SJ, Ziaee SAM, Gokhale PJ, Andrews PW. OCT4 spliced variants are differentially expressed in human pluripotent and nonpluripotent cells. Stem Cells. 2008;26:3068–74.
doi: 10.1634/stemcells.2008-0530 pubmed: 18787205

Auteurs

Isabelle Leticia Zaboroski Silva (ILZ)

Stem Cell Basic Biology Laboratory, Instituto Carlos Chagas, Fiocruz PR, Curitiba, PR, 81310-020, Brazil.

Rubens Gomes-Júnior (R)

Stem Cell Basic Biology Laboratory, Instituto Carlos Chagas, Fiocruz PR, Curitiba, PR, 81310-020, Brazil.

Evelin Brandão da Silva (EB)

Stem Cell Basic Biology Laboratory, Instituto Carlos Chagas, Fiocruz PR, Curitiba, PR, 81310-020, Brazil.

Isadora May Vaz (IM)

Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, PR, 80215-901, Brazil.

Valderez Ravaglio Jamur (VR)

Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, PR, 80215-901, Brazil.

Bruno Solano de Freitas Souza (BS)

Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, 40296-710, Brazil.
D'Or Institute for Research and Education (IDOR), Salvador, 41253-190, Brazil.

Patrícia Shigunov (P)

Stem Cell Basic Biology Laboratory, Instituto Carlos Chagas, Fiocruz PR, Curitiba, PR, 81310-020, Brazil. patricia.shigunov@fiocruz.br.

Classifications MeSH