RNA 3D structure modeling by fragment assembly with small-angle X-ray scattering restraints.


Journal

Bioinformatics (Oxford, England)
ISSN: 1367-4811
Titre abrégé: Bioinformatics
Pays: England
ID NLM: 9808944

Informations de publication

Date de publication:
02 09 2023
Historique:
received: 21 04 2023
revised: 14 07 2023
medline: 5 9 2023
pubmed: 30 8 2023
entrez: 30 8 2023
Statut: ppublish

Résumé

Structure determination is a key step in the functional characterization of many non-coding RNA molecules. High-resolution RNA 3D structure determination efforts, however, are not keeping up with the pace of discovery of new non-coding RNA sequences. This increases the importance of computational approaches and low-resolution experimental data, such as from the small-angle X-ray scattering experiments. We present RNA Masonry, a computer program and a web service for a fully automated modeling of RNA 3D structures. It assemblies RNA fragments into geometrically plausible models that meet user-provided secondary structure constraints, restraints on tertiary contacts, and small-angle X-ray scattering data. We illustrate the method description with detailed benchmarks and its application to structural studies of viral RNAs with SAXS restraints. The program web server is available at http://iimcb.genesilico.pl/rnamasonry. The source code is available at https://gitlab.com/gchojnowski/rnamasonry.

Identifiants

pubmed: 37647627
pii: 7255907
doi: 10.1093/bioinformatics/btad527
pmc: PMC10474949
pii:
doi:

Substances chimiques

RNA, Viral 0
RNA, Untranslated 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© The Author(s) 2023. Published by Oxford University Press.

Références

J Appl Crystallogr. 2017 Jun 26;50(Pt 4):1212-1225
pubmed: 28808438
Nucleic Acids Res. 2016 Apr 20;44(7):e63
pubmed: 26687716
Nat Methods. 2011 Jun;8(6):513-21
pubmed: 21552257
RNA. 2020 Aug;26(8):982-995
pubmed: 32371455
BMC Struct Biol. 2019 Mar 21;19(1):5
pubmed: 30898165
Nat Commun. 2019 Jun 28;10(1):2871
pubmed: 31253805
J Appl Crystallogr. 2009 Apr 1;42(Pt 2):342-346
pubmed: 27630371
Nucleic Acids Res. 2016 Jul 8;44(W1):W424-9
pubmed: 27151198
Nucleic Acids Res. 2020 Jan 24;48(2):576-588
pubmed: 31799609
PLoS One. 2013 Nov 04;8(11):e78007
pubmed: 24223750
Nucleic Acids Res. 2019 Jan 8;47(D1):D520-D528
pubmed: 30357364
RNA. 2010 Jul;16(7):1340-9
pubmed: 20498460
RNA. 2008 Mar;14(3):410-6
pubmed: 18230758
Nucleic Acids Res. 2021 Aug 20;49(14):e84
pubmed: 34107023
Nucleic Acids Res. 2012 Aug;40(14):e112
pubmed: 22539264
Nucleic Acids Res. 2014 Jan;42(Database issue):D123-31
pubmed: 24220091
Nat Methods. 2010 Apr;7(4):291-4
pubmed: 20190761
Bioinformatics. 2010 Aug 15;26(16):2057-9
pubmed: 20562414
Bioinformatics. 2009 Jun 1;25(11):1422-3
pubmed: 19304878
PLoS One. 2017 Oct 20;12(10):e0186849
pubmed: 29053745
IUCrJ. 2015 Apr 21;2(Pt 3):352-60
pubmed: 25995844
J Phys Chem B. 2010 Aug 12;114(31):10039-48
pubmed: 20684627
Nucleic Acids Res. 2011 May;39(10):4007-22
pubmed: 21300639
Nucleic Acids Res. 2021 Jan 8;49(D1):D192-D200
pubmed: 33211869
Methods Enzymol. 2022;677:479-529
pubmed: 36410961
J Chem Theory Comput. 2021 Oct 12;17(10):6509-6521
pubmed: 34506136
RNA. 2007 Jul;13(7):939-51
pubmed: 17507661
Nucleic Acids Res. 2014 Oct 29;42(19):e151
pubmed: 25159614

Auteurs

Grzegorz Chojnowski (G)

International Institute of Molecular and Cell Biology, Warsaw 02-109, Poland.
European Molecular Biology Laboratory, Hamburg Unit, Hamburg 22607, Germany.

Rafał Zaborowski (R)

International Institute of Molecular and Cell Biology, Warsaw 02-109, Poland.

Marcin Magnus (M)

ReMedy International Research Agenda Unit, IMol Polish Academy of Sciences, Warsaw, Poland.

Sunandan Mukherjee (S)

International Institute of Molecular and Cell Biology, Warsaw 02-109, Poland.

Janusz M Bujnicki (JM)

International Institute of Molecular and Cell Biology, Warsaw 02-109, Poland.

Articles similaires

Silicon Dioxide Water Hot Temperature Compressive Strength X-Ray Diffraction
Cobalt Azo Compounds Ferric Compounds Polyesters Photolysis

Glucose and glutamine drive hepatitis E virus replication.

Shaheen Khan, Suruchi Aggarwal, Pooja Bhatia et al.
1.00
Glutamine Virus Replication Hepatitis E virus Glucose Glycolysis

Clr4

Hyun-Soo Kim, Benjamin Roche, Sonali Bhattacharjee et al.
1.00
Schizosaccharomyces pombe Proteins Schizosaccharomyces Heterochromatin Ubiquitination Cell Cycle Proteins

Classifications MeSH