Biomediated control of colloidal silica grouting using microbial fermentation.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
30 08 2023
30 08 2023
Historique:
received:
09
06
2023
accepted:
25
08
2023
medline:
1
9
2023
pubmed:
31
8
2023
entrez:
30
8
2023
Statut:
epublish
Résumé
Colloidal silica grouting is a ground improvement technique capable of stabilizing weak problematic soils and achieving large reductions in soil hydraulic conductivities for applications including earthquake-induced liquefaction mitigation and groundwater flow control. In the conventional approach, chemical accelerants are added to colloidal silica suspensions that are introduced into soils targeted for improvement and the formation of a semi-solid silica gel occurs over time at a rate controlled by suspension chemistry and in situ geochemical conditions. Although the process has been extensively investigated, controlling the rate of gel formation in the presence of varying subsurface conditions and the limited ability of conventional methods to effectively monitor the gel formation process has posed practical challenges. In this study, a biomediated soil improvement process is proposed which utilizes enriched fermentative microorganisms to control the gelation of colloidal silica grouts through solution pH reductions and ionic strength increases. Four series of batch experiments were performed to investigate the ability of glucose fermenting microorganisms to be enriched in natural sands to induce geochemical changes capable of mediating silica gel formation and assess the effect of treatment solution composition on pH reduction behaviors. Complementary batch and soil column experiments were subsequently performed to upscale the process and explore the effectiveness of chemical, hydraulic, and geophysical methods to monitor microbial activity, gel formation, and engineering improvements. Results demonstrate that fermentative microorganisms can be successfully enriched and mediate gel formation in suspensions that would otherwise remain highly stable, thereby forgoing the need for chemical accelerants, increasing the reliability and control of colloidal silica grouting, enabling new monitoring approaches, and affording engineering enhancements comparable to conventional colloidal silica grouts.
Identifiants
pubmed: 37648736
doi: 10.1038/s41598-023-41402-z
pii: 10.1038/s41598-023-41402-z
pmc: PMC10468516
doi:
Substances chimiques
Silica Gel
60650-90-0
Suspensions
0
Soil
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
14184Informations de copyright
© 2023. Springer Nature Limited.
Références
Persoff, P., Finsterle, S., Moridis, G. J., Apps, J., Pruess, K., & Muller, S. J. Injectable barriers for waste isolation (LBL--36739, CONF-950828--19, 106544; p. LBL--36739, CONF-950828--19, 106544) (1995). https://doi.org/10.2172/106544 .
Moridis, G. J., Finsterle, S. & Heiser, J. Evaluation of alternative designs for an injectable subsurface barrier at the Brookhaven National Laboratory Site, Long Island, New York. Water Resour. Res. 35(10), 2937–2953. https://doi.org/10.1029/1999WR900184 (1999).
doi: 10.1029/1999WR900184
Gallagher, P. M. & Mitchell, J. K. Influence of colloidal silica grout on liquefaction potential and cyclic undrained behavior of loose sand. Soil Dyn. Earthq. Eng. 22(9–12), 1017–1026. https://doi.org/10.1016/S0267-7261(02)00126-4 (2002).
doi: 10.1016/S0267-7261(02)00126-4
Gallagher, P. M., Pamuk, A. & Abdoun, T. Stabilization of liquefiable soils using colloidal silica grout. J. Mater. Civ. Eng. 19(1), 33–40. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:1(33) (2007).
doi: 10.1061/(ASCE)0899-1561(2007)19:1(33)
Díaz-Rodríguez, J. A., Antonio-Izarraras, V. M., Bandini, P. & López-Molina, J. A. Cyclic strength of a natural liquefiable sand stabilized with colloidal silica grout. Can. Geotech. J. 45(10), 1345–1355. https://doi.org/10.1139/T08-072 (2008).
doi: 10.1139/T08-072
Spencer, L., Rix, G. J., & Gallagher, P. Colloidal silica gel and sand mixture dynamic properties. In Geotechnical Earthquake Engineering and Soil Dynamics IV, 1–10 (2008). https://doi.org/10.1061/40975(318)101 .
Gallagher, P. M. & Lin, Y. Colloidal silica transport through liquefiable porous media. J. Geotech. Geoenviron. Eng. 135(11), 1702–1712. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000123 (2009).
doi: 10.1061/(ASCE)GT.1943-5606.0000123
Hamderi, M. & Gallagher, P. M. Pilot-scale modeling of colloidal silica delivery to liquefiable sands. Soils Found. 55(1), 143–153. https://doi.org/10.1016/j.sandf.2014.12.011 (2015).
doi: 10.1016/j.sandf.2014.12.011
Wong, C., Pedrotti, M., El Mountassir, G. & Lunn, R. J. A study on the mechanical interaction between soil and colloidal silica gel for ground improvement. Eng. Geol. 243, 84–100. https://doi.org/10.1016/j.enggeo.2018.06.011 (2018).
doi: 10.1016/j.enggeo.2018.06.011
Ciardi, G., Vannucchi, G. & Madiai, C. Effects of colloidal silica grouting on geotechnical properties of liquefiable soils: A review. Geotechnics 1(2), 460–491. https://doi.org/10.3390/geotechnics1020022 (2021).
doi: 10.3390/geotechnics1020022
Krishnan, J. & Shukla, S. The utilisation of colloidal silica grout in soil stabilisation and liquefaction mitigation: A state-of-the-art review. Geotech. Geol. Eng. 39(4), 2681–2706. https://doi.org/10.1007/s10706-020-01651-5 (2021).
doi: 10.1007/s10706-020-01651-5
Agapoulaki, G. I. & Papadimitriou, A. G. Rheological properties of colloidal silica grout for passive stabilization against liquefaction. J. Mater. Civ. Eng. 30(10), 04018251. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002377 (2018).
doi: 10.1061/(ASCE)MT.1943-5533.0002377
Persoff, P., Apps, J., Moridis, G. & Whang, J. M. Effect of dilution and contaminants on sand grouted with colloidal silica. J. Geotech. Geoenviron. Eng. 125(6), 461–469. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:6(461) (1999).
doi: 10.1061/(ASCE)1090-0241(1999)125:6(461)
Liao, H. J., Huang, C. C., & Chao, B. S. Liquefaction resistance of a colloid silica grouted sand. In Grouting and Ground Treatment, 1305–1313 (2003). https://doi.org/10.1061/40663(2003)77 .
Gallagher, P. M., & Koch, A. J. Model testing of passive site stabilization: A new grouting technique. In Grouting and Ground Treatment, 1478–1489 (2003). https://doi.org/10.1061/40663(2003)125 .
Gallagher, P. M., Conlee, C. T. & Rollins, K. M. Full-scale field testing of colloidal silica grouting for mitigation of liquefaction risk. J. Geotech. Geoenviron. Eng. 133(2), 186–196. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:2(186) (2007).
doi: 10.1061/(ASCE)1090-0241(2007)133:2(186)
Moridis, G., Persoff, P., Apps, J., Myer, L., & Pruess, K.. A field test of permeation grouting in heterogenous soils using a new generation of barrier liquids. In Lawrence Berkeley National Laboratory. LBNL Report #: LBL-37554 (1995). Retrieved from https://escholarship.org/uc/item/3dp5n3s3
Karol, R. H. Chemical Grouting and Soil Stabilization, Revised and Expanded (CRC Press, 2003). https://doi.org/10.1201/9780203911815 .
doi: 10.1201/9780203911815
Iler, R. K. The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry (Wiley, 1979).
Hyde, E. D. E. R., Seyfaee, A., Neville, F. & Moreno-Atanasio, R. Colloidal silica particle synthesis and future industrial manufacturing pathways: A review. Ind. Eng. Chem. Res. 55(33), 8891–8913. https://doi.org/10.1021/acs.iecr.6b01839 (2016).
doi: 10.1021/acs.iecr.6b01839
Persoff, P., Moridis, G. J., Apps, J., Pruess, K., & Muller, S. J. Designing injectable colloidal silica barriers for waste isolation at the Hanford Site. In In-Situ Remediation: Scientific Basis for Current and Future Technologies. Part 1. (1994). https://www.osti.gov/biblio/400689 .
Zhao, M., Liu, G., Zhang, C., Guo, W. & Luo, Q. State-of-the-art of colloidal silica-based soil liquefaction mitigation: An emerging technique for ground improvement. Appl. Sci. 10(1), 15. https://doi.org/10.3390/app10010015 (2019).
doi: 10.3390/app10010015
Gallagher, P. M. (2000). Passive site remediation for mitigation of liquefaction risk (Doctoral dissertation, Virginia Tech).
Dalstein, L., Potapova, E. & Tyrode, E. The elusive silica/water interface: Isolated silanols under water as revealed by vibrational sum frequency spectroscopy. Phys. Chem. Chem. Phys. 19(16), 10343–10349. https://doi.org/10.1039/C7CP01507K (2017).
doi: 10.1039/C7CP01507K
pubmed: 28379259
Derjaguin, B. V., Churaev, N. V. & Muller, V. M. The Derjaguin–Landau–Verwey–Overbeek (DLVO) theory of stability of lyophobic colloids. In Surface Forces (eds Derjaguin, B. V. et al.) 293–310 (Springer, 1987). https://doi.org/10.1007/978-1-4757-6639-4_8 .
doi: 10.1007/978-1-4757-6639-4_8
Sögaard, C., Funehag, J. & Abbas, Z. Silica sol as grouting material: A physio-chemical analysis. Nano Convergence 5(1), 6. https://doi.org/10.1186/s40580-018-0138-1 (2018).
doi: 10.1186/s40580-018-0138-1
pubmed: 29503794
pmcid: 5829124
Jurinak, J. J. & Summers, L. E. Oilfield applications of colloidal silica gel. SPE Prod. Eng. 6(04), 406–412. https://doi.org/10.2118/18505-PA (1991).
doi: 10.2118/18505-PA
Gallagher, P. M., & Lin, Y. Column Testing to Determine Colloidal Silica Transport Mechanisms. In Innovations in Grouting and Soil Improvement, 1–10 (2005). https://doi.org/10.1061/40783(162)15 .
Böck, A., & Sawers, G. Fermentation. In Escherichia coli and Salmonella typhimurium: Cellular and molecular biology, vol. 1, 262–282 (1996).
Cheng, L., Yang, Y. & Chu, J. In-situ microbially induced Ca
doi: 10.1111/1751-7915.13315
pubmed: 30293237
Maclachlan, E., El Mountassir, G. & Lunn, R. J. Use of bacterial ureolysis for improved gelation of silica sol in rock grouting. Géotech. Lett. 3(4), 180–184. https://doi.org/10.1680/geolett.13.00064 (2013).
doi: 10.1680/geolett.13.00064
Baron, S., Fons, M. & Albrecht, T. Medical Microbiology 4th edn. (University of Texas Medical Branch at Galveston, 1996).
Zhang, Z. Y., Jin, B. & Kelly, J. M. Production of lactic acid from renewable materials by Rhizopus fungi. Biochem. Eng. J. 35(3), 251–263. https://doi.org/10.1016/j.bej.2007.01.028 (2007).
doi: 10.1016/j.bej.2007.01.028
Batt, C. A. & Tortorello, M. L. (eds) Encyclopedia of Food Microbiology 2nd edn. (Academic Press/Elsevier, 2014).
Madigan, M. T., Martinko, J. M., Parker, J., & Brock, T. D. Brock Biology of Microorganisms (10. ed). Pearson (2003).
Lee, M. et al. Investigating ammonium by-product removal for Ureolytic bio-cementation using meter-scale experiments. Sci. Rep. 9(1), 18313. https://doi.org/10.1038/s41598-019-54666-1 (2019).
doi: 10.1038/s41598-019-54666-1
pubmed: 31797962
pmcid: 6892930
ASTM. Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). ASTM D2487-17 (2017a).
Graddy, C. M. R. et al. Diversity of Sporosarcina-like bacterial strains obtained from meter-scale augmented and stimulated biocementation experiments. Environ. Sci. Technol. 52(7), 3997–4005. https://doi.org/10.1021/acs.est.7b04271 (2018).
doi: 10.1021/acs.est.7b04271
pubmed: 29505251
San Pablo, A. C. M. et al. Meter-scale biocementation experiments to advance process control and reduce impacts: examining spatial control, ammonium by-product removal, and chemical reductions. J. Geotech. Geoenviron. Eng. 146(11), 04020125. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002377 (2020).
doi: 10.1061/(ASCE)GT.1943-5606.0002377
Burdalski, R. J., Ribeiro, B. G. O., Gomez, M. G. & Gorman-Lewis, D. Mineralogy, morphology, and reaction kinetics of ureolytic bio-cementation in the presence of seawater ions and varying soil materials. Sci. Rep. 12(1), 17100. https://doi.org/10.1038/s41598-022-21268-3 (2022).
doi: 10.1038/s41598-022-21268-3
pubmed: 36224231
pmcid: 9556692
DeJong, J. T., Gomez, M. G., San Pablo, A. C., Graddy, C. M. R., Nelson, D. C., Lee, M., Ziotopoulou, K., Montoya, B., & Kwon, T. H. State of the Art: MICP soil improvement and its application to liquefaction hazard mitigation. In Proceedings of the 20th International Conference on Soil Mechanics and Geotechnical Engineering, Sydney 2022. (2022).
Lee, M., Gomez, M. G., El Kortbawi, M. & Ziotopoulou, K. Effect of light biocementation on the liquefaction triggering and post-triggering behavior of loose sands. J. Geotech. Geoenviron. Eng. 148(1), 04021170 (2022).
doi: 10.1061/(ASCE)GT.1943-5606.0002707
ASTM. Standard Test Method for Unconfined Compressive Strength of Cohesive Soil. ASTM D2166-00 (2017b).
Probandt, D., Eickhorst, T., Ellrott, A., Amann, R. & Knittel, K. Microbial life on a sand grain: From bulk sediment to single grains. ISME J. 12(2), 623–633 (2018).
doi: 10.1038/ismej.2017.197
pubmed: 29192905
Tate, R. L. III. Soil Microbiology (Wiley, 2020).
doi: 10.1002/9781119114314
Suárez, D. C., Liria, C. W. & Kilikian, B. V. Effect of yeast extract on Escherichia coli growth and acetic acid production. World J. Microbiol. Biotechnol. 14, 331–335 (1998).
doi: 10.1023/A:1008800908696
Trchounian, A. & Kobayashi, H. Fermenting Escherichia coli is able to grow in media of high osmolarity, but is sensitive to the presence of sodium ion. Curr. Microbiol. 39, 109–114 (1999).
doi: 10.1007/s002849900429
pubmed: 10398838
Abdulkarim, S. M., Fatimah, A. B. & Anderson, J. G. Effect of salt concentrations on the growth of heat-stressed and unstressed Escherichia coli. J. Food Agric. Environ. 7(3–4), 51–54 (2009).
Gomez, M. G., Graddy, C. M. R., DeJong, J. T., Nelson, D. C. & Tsesarsky, M. Stimulation of native microorganisms for biocementation in samples recovered from field-scale treatment depths. J. Geotech. Geoenviron. Eng. 144(1), 04017098. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001804 (2018).
doi: 10.1061/(ASCE)GT.1943-5606.0001804
Ghosh, S. & Dhar, N. R. Stability of the sols of tungstic, vanadic and silicic acids under different conditions. J. Phys. Chem. 33(12), 1905–1921. https://doi.org/10.1021/j150306a005 (1929).
doi: 10.1021/j150306a005
Patani, M. J., Patani, P. J. & Trivedi, A. M. The electrical conductivity of silica sols. Proc. Indian Acad. Sci. Sect. A 49(3), 151–157. https://doi.org/10.1007/BF03052880 (1959).
doi: 10.1007/BF03052880
Persoff, P., Moridis, G., Apps, J. & Pruess, K. Evaluation tests for colloidal silica for use in grouting applications. Geotech. Test. J. 21(3), 264. https://doi.org/10.1520/GTJ10899J (1998).
doi: 10.1520/GTJ10899J