Gut microbial carbohydrate metabolism contributes to insulin resistance.
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
Sep 2023
Sep 2023
Historique:
received:
25
03
2022
accepted:
20
07
2023
medline:
15
9
2023
pubmed:
31
8
2023
entrez:
30
8
2023
Statut:
ppublish
Résumé
Insulin resistance is the primary pathophysiology underlying metabolic syndrome and type 2 diabetes
Identifiants
pubmed: 37648852
doi: 10.1038/s41586-023-06466-x
pii: 10.1038/s41586-023-06466-x
pmc: PMC10499599
doi:
Substances chimiques
Monosaccharides
0
Insulin
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
389-395Commentaires et corrections
Type : CommentIn
Informations de copyright
© 2023. The Author(s).
Références
Moller, D. E. New drug targets for type 2 diabetes and the metabolic syndrome. Nature 414, 821–827 (2001).
pubmed: 11742415
doi: 10.1038/414821a
Després, J. P. & Lemieux, I. Abdominal obesity and metabolic syndrome. Nature 444, 881–887 (2006).
pubmed: 17167477
doi: 10.1038/nature05488
Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006).
pubmed: 17183312
doi: 10.1038/nature05414
Turnbaugh, P. J. et al. A core gut microbiome in obese and lean twins. Nature 457, 480–484 (2009).
pubmed: 19043404
doi: 10.1038/nature07540
Qin, J. et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490, 55–60 (2012).
pubmed: 23023125
doi: 10.1038/nature11450
Karlsson, F. H. et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498, 99–103 (2013).
pubmed: 23719380
doi: 10.1038/nature12198
Thingholm, L. B. et al. Obese individuals with and without type 2 diabetes show different gut microbial functional capacity and composition. Cell Host Microbe 26, 252–264 (2019).
pubmed: 31399369
pmcid: 7720933
doi: 10.1016/j.chom.2019.07.004
Wu, H. et al. The gut microbiota in prediabetes and diabetes: a population-based cross-sectional study. Cell Metab. 32, 379–390 (2020).
pubmed: 32652044
doi: 10.1016/j.cmet.2020.06.011
Gou, W. et al. Interpretable machine learning framework reveals robust gut microbiome features associated with type 2 diabetes. Diabetes Care 44, 358–366 (2021).
pubmed: 33288652
doi: 10.2337/dc20-1536
McNeil, N. I. The contribution of the large intestine to energy supplies in man. Am. J. Clin. Nutr. 39, 338–342 (1984).
pubmed: 6320630
doi: 10.1093/ajcn/39.2.338
Forslund, K. et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528, 262–266 (2015).
pubmed: 26633628
pmcid: 4681099
doi: 10.1038/nature15766
Pedersen, H. K. et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature 535, 376–381 (2016).
pubmed: 27409811
doi: 10.1038/nature18646
Yamada, C. et al. Optimal reference interval for homeostasis model assessment of insulin resistance in a Japanese population. J. Diabetes Investig. 2, 373–376 (2011).
pubmed: 24843516
pmcid: 4019305
doi: 10.1111/j.2040-1124.2011.00113.x
Kanamori-Katayama, M. et al. Unamplified cap analysis of gene expression on a single-molecule sequencer. Genome Res. 21, 1150–1159 (2011).
pubmed: 21596820
pmcid: 3129257
doi: 10.1101/gr.115469.110
Peng, H., Long, F. & Ding, C. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 27, 1226–1238 (2005).
pubmed: 16119262
doi: 10.1109/TPAMI.2005.159
den Besten, G. et al. Gut-derived short-chain fatty acids are vividly assimilated into host carbohydrates and lipids. Am. J. Physiol. Gastrointest. Liver Physiol. 305, G900–G910 (2013).
doi: 10.1152/ajpgi.00265.2013
Zierer, J. et al. The fecal metabolome as a functional readout of the gut microbiome. Nat. Genet. 50, 790–795 (2018).
pubmed: 29808030
pmcid: 6104805
doi: 10.1038/s41588-018-0135-7
Lloyd-Price, J. et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature 569, 655–662 (2019).
pubmed: 31142855
pmcid: 6650278
doi: 10.1038/s41586-019-1237-9
Hui, D. Y. Intestinal phospholipid and lysophospholipid metabolism in cardiometabolic disease. Curr. Opin. Lipidol. 27, 507–512 (2016).
pubmed: 27438680
pmcid: 5125253
doi: 10.1097/MOL.0000000000000334
Tsugawa, H. et al. A lipidome atlas in MS-DIAL 4. Nat. Biotechnol. 38, 1159–1163 (2020).
pubmed: 32541957
doi: 10.1038/s41587-020-0531-2
Yasuda, S. et al. Elucidation of gut microbiota-associated lipids using LC-MS/MS and 16S rRNA sequence analyses. iScience 23, 101841 (2020).
pubmed: 33313490
pmcid: 7721639
doi: 10.1016/j.isci.2020.101841
Erion, D. M. & Shulman, G. I. Diacylglycerol-mediated insulin resistance. Nat. Med. 16, 400–402 (2010).
pubmed: 20376053
pmcid: 3730126
doi: 10.1038/nm0410-400
An, D. et al. Sphingolipids from a symbiotic microbe regulate homeostasis of host intestinal natural killer T cells. Cell 156, 123–133 (2014).
pubmed: 24439373
pmcid: 3909465
doi: 10.1016/j.cell.2013.11.042
Claesson, M. J. et al. Gut microbiota composition correlates with diet and health in the elderly. Nature 488, 178–184 (2012).
pubmed: 22797518
doi: 10.1038/nature11319
Liu, R. et al. Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention. Nat. Med. 23, 859–868 (2017).
pubmed: 28628112
doi: 10.1038/nm.4358
Piening, B. D., Zhou, W., Mclaughlin, T. L., Weinstock, G. M. & Snyder, M. P. Integrative personal omics profiles during periods of weight gain and loss. Cell Syst. 6, 157–170 (2018).
pubmed: 29361466
pmcid: 6021558
doi: 10.1016/j.cels.2017.12.013
Ridaura, V. K. et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341, 1241214 (2013).
pubmed: 24009397
doi: 10.1126/science.1241214
Flint, H. J., Scott, K. P., Duncan, S. H., Louis, P. & Forano, E. Microbial degradation of complex carbohydrates in the gut. Gut Microbes 3, 289–306 (2012).
pubmed: 22572875
pmcid: 3463488
doi: 10.4161/gmic.19897
Vacca, M. et al. The controversial role of human gut Lachnospiraceae. Microorganisms 8, 573 (2020).
pubmed: 32326636
pmcid: 7232163
doi: 10.3390/microorganisms8040573
David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).
pubmed: 24336217
doi: 10.1038/nature12820
Deutscher, J., Francke, C. & Postma, P. W. How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol. Mol. Biol. Rev. 70, 939–1031 (2006).
pubmed: 17158705
pmcid: 1698508
doi: 10.1128/MMBR.00024-06
Flores, R. et al. Association of fecal microbial diversity and taxonomy with selected enzymatic functions. PLoS ONE 7, e39745 (2012).
pubmed: 22761886
pmcid: 3386201
doi: 10.1371/journal.pone.0039745
Cani, P. D. et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56, 1761–1772 (2007).
pubmed: 17456850
doi: 10.2337/db06-1491
Cani, P. D., Bibiloni, R., Knauf, C., Neyrinck, A. M. & Delzenne, N. M. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet–induced obesity and diabetes in mice. Diabetes 57, 1470–1481 (2008).
pubmed: 18305141
doi: 10.2337/db07-1403
Rajbhandari, P. et al. IL-10 signaling remodels adipose chromatin architecture to limit thermogenesis and energy expenditure. Cell 172, 218–233 (2018).
pubmed: 29249357
doi: 10.1016/j.cell.2017.11.019
Beppu, L. Y. et al. Tregs facilitate obesity and insulin resistance via a Blimp-1/IL-10 axis. JCI Insight 6, e140644 (2021).
Acosta, J. R. et al. Human-specific function of IL-10 in adipose tissue linked to insulin resistance. J. Clin. Endocrinol. Metab. 104, 4552–4562 (2019).
pubmed: 31132124
doi: 10.1210/jc.2019-00341
Tingley, D., Yamamoto, T., Hirose, K., Keele, L. & Imai, K. mediation: R package for causal mediation analysis. J. Stat. Softw. 59, 1–38 (2014).
doi: 10.18637/jss.v059.i05
Dekker, M. J., Su, Q., Baker, C., Rutledge, A. C. & Adeli, K. Fructose: a highly lipogenic nutrient implicated in insulin resistance, hepatic steatosis, and the metabolic syndrome. Am. J. Physiol. Endocrinol. Metab. 299, 685–694 (2010).
doi: 10.1152/ajpendo.00283.2010
Baig, S. et al. Genes involved in oxidative stress pathways are differentially expressed in circulating mononuclear cells derived from obese insulin-resistant and lean insulin-sensitive individuals following a single mixed-meal challenge. Front. Endocrinol. 10, 256 (2019).
doi: 10.3389/fendo.2019.00256
Dasu, M. R., Devaraj, S., Zhao, L., Hwang, D. H. & Jialal, I. High glucose induces toll-like receptor expression in human monocytes: mechanism of activation. Diabetes 57, 3090–3098 (2008).
pubmed: 18650365
pmcid: 2570406
doi: 10.2337/db08-0564
Hannou, S. A., Haslam, D. E., McKeown, N. M. & Herman, M. A. Fructose metabolism and metabolic disease. J. Clin. Invest. 128, 545–555 (2018).
pubmed: 29388924
pmcid: 5785258
doi: 10.1172/JCI96702
Chang, C. H. et al. Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell 153, 1239–1251 (2013).
pubmed: 23746840
pmcid: 3804311
doi: 10.1016/j.cell.2013.05.016
Matsuzawa, Y. Metabolic syndrome—definition and diagnostic criteria in Japan. J. Atheroscler. Thromb. 12, 301 (2005).
pubmed: 16394611
doi: 10.5551/jat.12.301
Vidigal, F. et al. Prevalence of metabolic syndrome and pre-metabolic syndrome in health professionals: LATINMETS Brazil study. Diabetol. Metab. Syndr. 7, 6 (2015).
pubmed: 25717347
pmcid: 4339435
doi: 10.1186/s13098-015-0003-x
Sato, K. et al. Obesity-related gut microbiota aggravates alveolar bone destruction in experimental periodontitis through elevation of uric acid. mBio 12, e0077121 (2021).
pubmed: 34061595
doi: 10.1128/mBio.00771-21
Takeuchi, T. et al. Acetate differentially regulates IgA reactivity to commensal bacteria. Nature 595, 560–564 (2021).
pubmed: 34262176
doi: 10.1038/s41586-021-03727-5
Tsugawa, H. et al. MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat. Methods 12, 523–526 (2015).
pubmed: 25938372
pmcid: 4449330
doi: 10.1038/nmeth.3393
Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinform. 9, 559 (2008).
doi: 10.1186/1471-2105-9-559
Xia, J., Psychogios, N., Young, N. & Wishart, D. S. MetaboAnalyst: a web server for metabolomic data analysis and interpretation. Nucleic Acids Res. 37, W652–W660 (2009).
pubmed: 19429898
pmcid: 2703878
doi: 10.1093/nar/gkp356
Milanese, A. et al. Microbial abundance, activity and population genomic profiling with mOTUs2. Nat. Commun. 10, 1014 (2019).
pubmed: 30833550
pmcid: 6399450
doi: 10.1038/s41467-019-08844-4
Nishijima, S. et al. The gut microbiome of healthy Japanese and its microbial and functional uniqueness. DNA Res. 23, 125–133 (2016).
pubmed: 26951067
pmcid: 4833420
doi: 10.1093/dnares/dsw002
Li, J. et al. An integrated catalog of reference genes in the human gut microbiome. Nat. Biotechnol. 32, 834–841 (2014).
pubmed: 24997786
doi: 10.1038/nbt.2942
Cantarel, B. L. et al. The carbohydrate-active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res. 37, D233–D238 (2009).
pubmed: 18838391
doi: 10.1093/nar/gkn663
Kouno, T. et al. C1 CAGE detects transcription start sites and enhancer activity at single-cell resolution. Nat. Commun. 10, 360 (2019).
pubmed: 30664627
pmcid: 6341120
doi: 10.1038/s41467-018-08126-5
Salimullah, M., Mizuho, S., Plessy, C. & Carninci, P. NanoCAGE: a high-resolution technique to discover and interrogate cell transcriptomes. Cold Spring Harb. Protoc. 2011, pdb.prot5559 (2011).
Hasegawa, A., Daub, C., Carninci, P., Hayashizaki, Y. & Lassmann, T. MOIRAI: a compact workflow system for CAGE analysis. BMC Bioinform. 15, 144 (2014).
doi: 10.1186/1471-2105-15-144
Frankish, A. et al. GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res. 47, D766–D773 (2018).
pmcid: 6323946
doi: 10.1093/nar/gky955
Forrest, A. R. R. et al. A promoter-level mammalian expression atlas. Nature 507, 462–470 (2014).
pubmed: 24670764
doi: 10.1038/nature13182
Chen, E. Y. et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinform. 14, 128 (2013).
doi: 10.1186/1471-2105-14-128
Kuleshov, M. V. et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44, W90–W97 (2016).
pubmed: 27141961
pmcid: 4987924
doi: 10.1093/nar/gkw377
Kubota, T. et al. Downregulation of macrophage Irs2 by hyperinsulinemia impairs IL-4-indeuced M2a-subtype macrophage activation in obesity. Nat. Commun. 9, 4863 (2018).
pubmed: 30451856
pmcid: 6242852
doi: 10.1038/s41467-018-07358-9
Kubota, T. et al. Impaired insulin signaling in endothelial cells reduces insulin-induced glucose uptake by skeletal muscle. Cell Metab. 13, 294–307 (2011).
pubmed: 21356519
doi: 10.1016/j.cmet.2011.01.018
Kubota, N. et al. Dynamic functional relay between insulin receptor substrate 1 and 2 in hepatic insulin signaling during fasting and feeding. Cell Metab. 8, 49–64 (2008).
pubmed: 18590692
doi: 10.1016/j.cmet.2008.05.007
Kloke, J. D. & McKean, J. W. Rfit: rank-based estimation for linear models. R J. 4, 57–64 (2012).
doi: 10.32614/RJ-2012-014
Gevers, D. et al. The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe 15, 382–392 (2014).
pubmed: 24629344
pmcid: 4059512
doi: 10.1016/j.chom.2014.02.005
Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).
pubmed: 14597658
pmcid: 403769
doi: 10.1101/gr.1239303
Wang, D. et al. Characterization of gut microbial structural variations as determinants of human bile acid metabolism. Cell Host Microbe 29, 1802–1814 (2021).
pubmed: 34847370
doi: 10.1016/j.chom.2021.11.003