Gut microbial carbohydrate metabolism contributes to insulin resistance.


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
Sep 2023
Historique:
received: 25 03 2022
accepted: 20 07 2023
medline: 15 9 2023
pubmed: 31 8 2023
entrez: 30 8 2023
Statut: ppublish

Résumé

Insulin resistance is the primary pathophysiology underlying metabolic syndrome and type 2 diabetes

Identifiants

pubmed: 37648852
doi: 10.1038/s41586-023-06466-x
pii: 10.1038/s41586-023-06466-x
pmc: PMC10499599
doi:

Substances chimiques

Monosaccharides 0
Insulin 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

389-395

Commentaires et corrections

Type : CommentIn

Informations de copyright

© 2023. The Author(s).

Références

Moller, D. E. New drug targets for type 2 diabetes and the metabolic syndrome. Nature 414, 821–827 (2001).
pubmed: 11742415 doi: 10.1038/414821a
Després, J. P. & Lemieux, I. Abdominal obesity and metabolic syndrome. Nature 444, 881–887 (2006).
pubmed: 17167477 doi: 10.1038/nature05488
Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006).
pubmed: 17183312 doi: 10.1038/nature05414
Turnbaugh, P. J. et al. A core gut microbiome in obese and lean twins. Nature 457, 480–484 (2009).
pubmed: 19043404 doi: 10.1038/nature07540
Qin, J. et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490, 55–60 (2012).
pubmed: 23023125 doi: 10.1038/nature11450
Karlsson, F. H. et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498, 99–103 (2013).
pubmed: 23719380 doi: 10.1038/nature12198
Thingholm, L. B. et al. Obese individuals with and without type 2 diabetes show different gut microbial functional capacity and composition. Cell Host Microbe 26, 252–264 (2019).
pubmed: 31399369 pmcid: 7720933 doi: 10.1016/j.chom.2019.07.004
Wu, H. et al. The gut microbiota in prediabetes and diabetes: a population-based cross-sectional study. Cell Metab. 32, 379–390 (2020).
pubmed: 32652044 doi: 10.1016/j.cmet.2020.06.011
Gou, W. et al. Interpretable machine learning framework reveals robust gut microbiome features associated with type 2 diabetes. Diabetes Care 44, 358–366 (2021).
pubmed: 33288652 doi: 10.2337/dc20-1536
McNeil, N. I. The contribution of the large intestine to energy supplies in man. Am. J. Clin. Nutr. 39, 338–342 (1984).
pubmed: 6320630 doi: 10.1093/ajcn/39.2.338
Forslund, K. et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528, 262–266 (2015).
pubmed: 26633628 pmcid: 4681099 doi: 10.1038/nature15766
Pedersen, H. K. et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature 535, 376–381 (2016).
pubmed: 27409811 doi: 10.1038/nature18646
Yamada, C. et al. Optimal reference interval for homeostasis model assessment of insulin resistance in a Japanese population. J. Diabetes Investig. 2, 373–376 (2011).
pubmed: 24843516 pmcid: 4019305 doi: 10.1111/j.2040-1124.2011.00113.x
Kanamori-Katayama, M. et al. Unamplified cap analysis of gene expression on a single-molecule sequencer. Genome Res. 21, 1150–1159 (2011).
pubmed: 21596820 pmcid: 3129257 doi: 10.1101/gr.115469.110
Peng, H., Long, F. & Ding, C. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 27, 1226–1238 (2005).
pubmed: 16119262 doi: 10.1109/TPAMI.2005.159
den Besten, G. et al. Gut-derived short-chain fatty acids are vividly assimilated into host carbohydrates and lipids. Am. J. Physiol. Gastrointest. Liver Physiol. 305, G900–G910 (2013).
doi: 10.1152/ajpgi.00265.2013
Zierer, J. et al. The fecal metabolome as a functional readout of the gut microbiome. Nat. Genet. 50, 790–795 (2018).
pubmed: 29808030 pmcid: 6104805 doi: 10.1038/s41588-018-0135-7
Lloyd-Price, J. et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature 569, 655–662 (2019).
pubmed: 31142855 pmcid: 6650278 doi: 10.1038/s41586-019-1237-9
Hui, D. Y. Intestinal phospholipid and lysophospholipid metabolism in cardiometabolic disease. Curr. Opin. Lipidol. 27, 507–512 (2016).
pubmed: 27438680 pmcid: 5125253 doi: 10.1097/MOL.0000000000000334
Tsugawa, H. et al. A lipidome atlas in MS-DIAL 4. Nat. Biotechnol. 38, 1159–1163 (2020).
pubmed: 32541957 doi: 10.1038/s41587-020-0531-2
Yasuda, S. et al. Elucidation of gut microbiota-associated lipids using LC-MS/MS and 16S rRNA sequence analyses. iScience 23, 101841 (2020).
pubmed: 33313490 pmcid: 7721639 doi: 10.1016/j.isci.2020.101841
Erion, D. M. & Shulman, G. I. Diacylglycerol-mediated insulin resistance. Nat. Med. 16, 400–402 (2010).
pubmed: 20376053 pmcid: 3730126 doi: 10.1038/nm0410-400
An, D. et al. Sphingolipids from a symbiotic microbe regulate homeostasis of host intestinal natural killer T cells. Cell 156, 123–133 (2014).
pubmed: 24439373 pmcid: 3909465 doi: 10.1016/j.cell.2013.11.042
Claesson, M. J. et al. Gut microbiota composition correlates with diet and health in the elderly. Nature 488, 178–184 (2012).
pubmed: 22797518 doi: 10.1038/nature11319
Liu, R. et al. Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention. Nat. Med. 23, 859–868 (2017).
pubmed: 28628112 doi: 10.1038/nm.4358
Piening, B. D., Zhou, W., Mclaughlin, T. L., Weinstock, G. M. & Snyder, M. P. Integrative personal omics profiles during periods of weight gain and loss. Cell Syst. 6, 157–170 (2018).
pubmed: 29361466 pmcid: 6021558 doi: 10.1016/j.cels.2017.12.013
Ridaura, V. K. et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341, 1241214 (2013).
pubmed: 24009397 doi: 10.1126/science.1241214
Flint, H. J., Scott, K. P., Duncan, S. H., Louis, P. & Forano, E. Microbial degradation of complex carbohydrates in the gut. Gut Microbes 3, 289–306 (2012).
pubmed: 22572875 pmcid: 3463488 doi: 10.4161/gmic.19897
Vacca, M. et al. The controversial role of human gut Lachnospiraceae. Microorganisms 8, 573 (2020).
pubmed: 32326636 pmcid: 7232163 doi: 10.3390/microorganisms8040573
David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).
pubmed: 24336217 doi: 10.1038/nature12820
Deutscher, J., Francke, C. & Postma, P. W. How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol. Mol. Biol. Rev. 70, 939–1031 (2006).
pubmed: 17158705 pmcid: 1698508 doi: 10.1128/MMBR.00024-06
Flores, R. et al. Association of fecal microbial diversity and taxonomy with selected enzymatic functions. PLoS ONE 7, e39745 (2012).
pubmed: 22761886 pmcid: 3386201 doi: 10.1371/journal.pone.0039745
Cani, P. D. et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56, 1761–1772 (2007).
pubmed: 17456850 doi: 10.2337/db06-1491
Cani, P. D., Bibiloni, R., Knauf, C., Neyrinck, A. M. & Delzenne, N. M. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet–induced obesity and diabetes in mice. Diabetes 57, 1470–1481 (2008).
pubmed: 18305141 doi: 10.2337/db07-1403
Rajbhandari, P. et al. IL-10 signaling remodels adipose chromatin architecture to limit thermogenesis and energy expenditure. Cell 172, 218–233 (2018).
pubmed: 29249357 doi: 10.1016/j.cell.2017.11.019
Beppu, L. Y. et al. Tregs facilitate obesity and insulin resistance via a Blimp-1/IL-10 axis. JCI Insight 6, e140644 (2021).
Acosta, J. R. et al. Human-specific function of IL-10 in adipose tissue linked to insulin resistance. J. Clin. Endocrinol. Metab. 104, 4552–4562 (2019).
pubmed: 31132124 doi: 10.1210/jc.2019-00341
Tingley, D., Yamamoto, T., Hirose, K., Keele, L. & Imai, K. mediation: R package for causal mediation analysis. J. Stat. Softw. 59, 1–38 (2014).
doi: 10.18637/jss.v059.i05
Dekker, M. J., Su, Q., Baker, C., Rutledge, A. C. & Adeli, K. Fructose: a highly lipogenic nutrient implicated in insulin resistance, hepatic steatosis, and the metabolic syndrome. Am. J. Physiol. Endocrinol. Metab. 299, 685–694 (2010).
doi: 10.1152/ajpendo.00283.2010
Baig, S. et al. Genes involved in oxidative stress pathways are differentially expressed in circulating mononuclear cells derived from obese insulin-resistant and lean insulin-sensitive individuals following a single mixed-meal challenge. Front. Endocrinol. 10, 256 (2019).
doi: 10.3389/fendo.2019.00256
Dasu, M. R., Devaraj, S., Zhao, L., Hwang, D. H. & Jialal, I. High glucose induces toll-like receptor expression in human monocytes: mechanism of activation. Diabetes 57, 3090–3098 (2008).
pubmed: 18650365 pmcid: 2570406 doi: 10.2337/db08-0564
Hannou, S. A., Haslam, D. E., McKeown, N. M. & Herman, M. A. Fructose metabolism and metabolic disease. J. Clin. Invest. 128, 545–555 (2018).
pubmed: 29388924 pmcid: 5785258 doi: 10.1172/JCI96702
Chang, C. H. et al. Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell 153, 1239–1251 (2013).
pubmed: 23746840 pmcid: 3804311 doi: 10.1016/j.cell.2013.05.016
Matsuzawa, Y. Metabolic syndrome—definition and diagnostic criteria in Japan. J. Atheroscler. Thromb. 12, 301 (2005).
pubmed: 16394611 doi: 10.5551/jat.12.301
Vidigal, F. et al. Prevalence of metabolic syndrome and pre-metabolic syndrome in health professionals: LATINMETS Brazil study. Diabetol. Metab. Syndr. 7, 6 (2015).
pubmed: 25717347 pmcid: 4339435 doi: 10.1186/s13098-015-0003-x
Sato, K. et al. Obesity-related gut microbiota aggravates alveolar bone destruction in experimental periodontitis through elevation of uric acid. mBio 12, e0077121 (2021).
pubmed: 34061595 doi: 10.1128/mBio.00771-21
Takeuchi, T. et al. Acetate differentially regulates IgA reactivity to commensal bacteria. Nature 595, 560–564 (2021).
pubmed: 34262176 doi: 10.1038/s41586-021-03727-5
Tsugawa, H. et al. MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat. Methods 12, 523–526 (2015).
pubmed: 25938372 pmcid: 4449330 doi: 10.1038/nmeth.3393
Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinform. 9, 559 (2008).
doi: 10.1186/1471-2105-9-559
Xia, J., Psychogios, N., Young, N. & Wishart, D. S. MetaboAnalyst: a web server for metabolomic data analysis and interpretation. Nucleic Acids Res. 37, W652–W660 (2009).
pubmed: 19429898 pmcid: 2703878 doi: 10.1093/nar/gkp356
Milanese, A. et al. Microbial abundance, activity and population genomic profiling with mOTUs2. Nat. Commun. 10, 1014 (2019).
pubmed: 30833550 pmcid: 6399450 doi: 10.1038/s41467-019-08844-4
Nishijima, S. et al. The gut microbiome of healthy Japanese and its microbial and functional uniqueness. DNA Res. 23, 125–133 (2016).
pubmed: 26951067 pmcid: 4833420 doi: 10.1093/dnares/dsw002
Li, J. et al. An integrated catalog of reference genes in the human gut microbiome. Nat. Biotechnol. 32, 834–841 (2014).
pubmed: 24997786 doi: 10.1038/nbt.2942
Cantarel, B. L. et al. The carbohydrate-active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res. 37, D233–D238 (2009).
pubmed: 18838391 doi: 10.1093/nar/gkn663
Kouno, T. et al. C1 CAGE detects transcription start sites and enhancer activity at single-cell resolution. Nat. Commun. 10, 360 (2019).
pubmed: 30664627 pmcid: 6341120 doi: 10.1038/s41467-018-08126-5
Salimullah, M., Mizuho, S., Plessy, C. & Carninci, P. NanoCAGE: a high-resolution technique to discover and interrogate cell transcriptomes. Cold Spring Harb. Protoc. 2011, pdb.prot5559 (2011).
Hasegawa, A., Daub, C., Carninci, P., Hayashizaki, Y. & Lassmann, T. MOIRAI: a compact workflow system for CAGE analysis. BMC Bioinform. 15, 144 (2014).
doi: 10.1186/1471-2105-15-144
Frankish, A. et al. GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res. 47, D766–D773 (2018).
pmcid: 6323946 doi: 10.1093/nar/gky955
Forrest, A. R. R. et al. A promoter-level mammalian expression atlas. Nature 507, 462–470 (2014).
pubmed: 24670764 doi: 10.1038/nature13182
Chen, E. Y. et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinform. 14, 128 (2013).
doi: 10.1186/1471-2105-14-128
Kuleshov, M. V. et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44, W90–W97 (2016).
pubmed: 27141961 pmcid: 4987924 doi: 10.1093/nar/gkw377
Kubota, T. et al. Downregulation of macrophage Irs2 by hyperinsulinemia impairs IL-4-indeuced M2a-subtype macrophage activation in obesity. Nat. Commun. 9, 4863 (2018).
pubmed: 30451856 pmcid: 6242852 doi: 10.1038/s41467-018-07358-9
Kubota, T. et al. Impaired insulin signaling in endothelial cells reduces insulin-induced glucose uptake by skeletal muscle. Cell Metab. 13, 294–307 (2011).
pubmed: 21356519 doi: 10.1016/j.cmet.2011.01.018
Kubota, N. et al. Dynamic functional relay between insulin receptor substrate 1 and 2 in hepatic insulin signaling during fasting and feeding. Cell Metab. 8, 49–64 (2008).
pubmed: 18590692 doi: 10.1016/j.cmet.2008.05.007
Kloke, J. D. & McKean, J. W. Rfit: rank-based estimation for linear models. R J. 4, 57–64 (2012).
doi: 10.32614/RJ-2012-014
Gevers, D. et al. The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe 15, 382–392 (2014).
pubmed: 24629344 pmcid: 4059512 doi: 10.1016/j.chom.2014.02.005
Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).
pubmed: 14597658 pmcid: 403769 doi: 10.1101/gr.1239303
Wang, D. et al. Characterization of gut microbial structural variations as determinants of human bile acid metabolism. Cell Host Microbe 29, 1802–1814 (2021).
pubmed: 34847370 doi: 10.1016/j.chom.2021.11.003

Auteurs

Tadashi Takeuchi (T)

Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan.

Tetsuya Kubota (T)

Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan. kubota@oha.toho-u.ac.jp.
Intestinal Microbiota Project, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Japan. kubota@oha.toho-u.ac.jp.
Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan. kubota@oha.toho-u.ac.jp.
Division of Diabetes and Metabolism, The Institute for Medical Science Asahi Life Foundation, Tokyo, Japan. kubota@oha.toho-u.ac.jp.
Department of Clinical Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Tokyo, Japan. kubota@oha.toho-u.ac.jp.

Yumiko Nakanishi (Y)

Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan.
Intestinal Microbiota Project, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Japan.

Hiroshi Tsugawa (H)

Metabolome Informatics Research Team, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, Japan.
Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan.
Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan.
Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo, Japan.

Wataru Suda (W)

Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan.

Andrew Tae-Jun Kwon (AT)

Laboratory for Applied Regulatory Genomics Network Analysis, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan.

Junshi Yazaki (J)

Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan.

Kazutaka Ikeda (K)

Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan.
Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Japan.

Shino Nemoto (S)

Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan.

Yoshiki Mochizuki (Y)

Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan.

Toshimori Kitami (T)

Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan.

Katsuyuki Yugi (K)

Laboratory for Integrated Cellular Systems, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan.
Institute for Advanced Biosciences, Keio University, Fujisawa, Japan.
Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.

Yoshiko Mizuno (Y)

Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, Japan.
Development Bank of Japan, Tokyo, Japan.

Nobutake Yamamichi (N)

Center for Epidemiology and Preventive Medicine, The University of Tokyo Hospital, Tokyo, Japan.

Tsutomu Yamazaki (T)

International University of Health and Welfare, Tokyo, Japan.

Iseki Takamoto (I)

Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
Department of Metabolism and Endocrinology, Tokyo Medical University Ibaraki Medical Center, Ami Town, Japan.

Naoto Kubota (N)

Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.

Takashi Kadowaki (T)

Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
Toranomon Hospital, Tokyo, Japan.

Erik Arner (E)

Laboratory for Applied Regulatory Genomics Network Analysis, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan.

Piero Carninci (P)

Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan.
Fondazione Human Technopole, Milan, Italy.

Osamu Ohara (O)

Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan.
Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Japan.

Makoto Arita (M)

Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan.
Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan.
Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan.
Human Biology-Microbiome-Quantum Research Center (WPI-Bio2Q), Keio University, Tokyo, Japan.

Masahira Hattori (M)

Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan.

Shigeo Koyasu (S)

Laboratory for Immune Cell Systems, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan.

Hiroshi Ohno (H)

Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan. hiroshi.ohno@riken.jp.
Intestinal Microbiota Project, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Japan. hiroshi.ohno@riken.jp.
Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan. hiroshi.ohno@riken.jp.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH