Advances in the management of anaplastic thyroid carcinoma: transforming a life-threatening condition into a potentially treatable disease.
Anaplastic thyroid cancer
BRAF MEK inhibitor
Dabrafenib
Targeted therapy BRAF V600E mutation
Trametinib
Journal
Reviews in endocrine & metabolic disorders
ISSN: 1573-2606
Titre abrégé: Rev Endocr Metab Disord
Pays: Germany
ID NLM: 100940588
Informations de publication
Date de publication:
31 Aug 2023
31 Aug 2023
Historique:
accepted:
23
08
2023
medline:
31
8
2023
pubmed:
31
8
2023
entrez:
30
8
2023
Statut:
aheadofprint
Résumé
Anaplastic thyroid cancer (ATC) is an infrequent thyroid tumor that usually occurs in elderly patients. There is often a history of previous differentiated thyroid cancer suggesting a biological progression. It is clinically characterized by a locally invasive cervical mass of rapid onset. Metastases are found at diagnosis in 50% of patients. Due to its adverse prognosis, a prompt diagnosis is crucial. In patients with unresectable or metastatic disease, multimodal therapy (chemotherapy and external beam radiotherapy) has yielded poor outcomes with 12-month overall survival of less than 20%. Recently, significant progress has been made in understanding the oncogenic pathways of ATC, leading to the identification of BRAF V600E mutations as the driver oncogene in nearly 40% of cases. The combination of the BRAF inhibitor dabrafenib (D) and MEK inhibitor trametinib (T) showed outstanding response rates in BRAF-mutated ATC and is now considered the standard of care in this setting. Recently, it was shown that neoadjuvant use of DT followed by surgery achieved 24-month overall survival rates of 80%. Although these approaches have changed the management of ATC, effective therapies are still needed for patients with BRAF wild-type ATC, and high-quality evidence is lacking for most aspects of this neoplasia. Additionally, in real-world settings, timely access to multidisciplinary care, molecular testing, and targeted therapies continues to be a challenge. Health policies are warranted to ensure specialized treatment for ATC.The expanding knowledge of ATC´s molecular biology, in addition to the ongoing clinical trials provides hope for the development of further therapeutic options.
Identifiants
pubmed: 37648897
doi: 10.1007/s11154-023-09833-1
pii: 10.1007/s11154-023-09833-1
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Basolo F, Macerola E, Poma AM, Torregrossa L. The 5th edition of WHO classification of tumors of endocrine organs: changes in the diagnosis of follicular-derived thyroid carcinoma. Endocrine. 2023;80:470–6. https://doi.org/10.1007/s12020-023-03336-4 .
doi: 10.1007/s12020-023-03336-4
pubmed: 36964880
pmcid: 10199828
Kebebew E, Greenspan FS, Clark OH, Woeber KA, McMillan A. Cancer. 2005;103(7):1330–5. https://doi.org/10.1002/cncr.20936 .
doi: 10.1002/cncr.20936
pubmed: 15739211
Smallridge RC, Copland JA. Anaplastic thyroid carcinoma: pathogenesis and emerging therapies. Clin Oncol. 2010;22:486–97.
doi: 10.1016/j.clon.2010.03.013
Subbiah V, Kreitman RJ, Wainberg ZA, Cho JY, Schellens JHM, Soria JC, Wen PY, Zielinski CC, Cabanillas ME, Boran A, Ilankumaran P, Burgess P, Romero Salas T, Keam B. Dabrafenib plus trametinib in patients with BRAF V600E-mutant anaplastic thyroid cancer: updated analysis from the phase II ROAR basket study. Ann Oncol. 2022; 33(4): 406 – 15. https://doi.org/10.1016/j.annonc.2021.12.014 .
Zhao X, Wang JR, Dadu R, Busaidy N, Xu L, Learned K, Chasen N, Vu T, Maniakas A, Eguia A, Diersing J, Gross N, Goepfert R, Lai S, Hofmann M, Ferrarotto R, Lu C, Gunn G, Spiotto M, Subbiah V, Williams M, Cabanillas M, Zafereo M. Surgery after BRAF-directed therapy is associated with improved survival in BRAF V600E mutant anaplastic thyroid cancer: a single-center retrospective cohort study. Thyroid. 2023;33(4):484–91. https://doi.org/10.1089/thy.2022.0504 .
doi: 10.1089/thy.2022.0504
pubmed: 36762947
pmcid: 10122263
Locati L, Colombo E, Dedecjus M, de la Fouchardiere C, Sents W, Bongiovanni M, Netea-Maier R. Current picture of anaplastic thyroid cancer patients’ care and meetable needs: A survey of 94 Institutions from the EORTC Endocrine and Head and Neck Cancer Groups. Eur J Cancer. 2023; 180: 146 – 54. Doi: 0.1016/j.ejca.2022.12.002.
United States of America, National Institutes of Health. National Cancer Institute. : Dictionary of Cancer Terms: “rare cancer”. https://www.cancer.gov/publications/dictionaries/cancer-terms/def/rare-cancer . Accessed July 13, 2023.
Lim H, Devesa S, Sosa JA, Check D, Kitahara C. Trends in thyroid cancer incidence and mortality in the United States, 1974–2013. JAMA. 2013;317(13):1338–48. https://doi.org/10.1001/jama.2017.2719 .
doi: 10.1001/jama.2017.2719
Dal Maso L, Tavilla A, Pacini F, Serraino D, van Dijk B, Chirlaque M, Capocaccia R, Larrañaga N, Colonna N, Agius M, Ardanaz D, ́-Casadevall ER, Kowalska J, Virdone A, Mallone S, Amash S, De Angelis H. R, and the EUROCARE-5 Working Group Survival of 86,690 patients with thyroid cancer: A population-based study in 29 European countries from EUROCARE-5. Eur J Cancer 77. 2017; 77:140 – 52. https://doi.org/10.1016/j.ejca.2017.02.023 .
Da Mota Borges A, Ferreira J, Koifman S, Koifman RJ. Thyroid cancer in Brazil: a descriptive study of cases held on hospital-based cancer registries, 2000–2016. Epidemiol Serv. Saude, Brasília. 2020; 29(4): e2019503. Doi: 0.5123/s1679-49742020000400012.
Miranda-Filho A, Lortet-Tieulent J, Bray F, Cao B, Franceschi S, Vaccarella S, Dal Maso L. Thyroid cancer incidence trends by histology in 25 countries: a population-based study. Lancet Diabetes Endocrinol. 2021;9:225–34. https://doi.org/10.1016/S2213-8587(21)00027-9 .
doi: 10.1016/S2213-8587(21)00027-9
pubmed: 33662333
Pereira M, Williams V, Hallanger Johnson J, Valderrabano P. Thyroid Cancer Incidence Trends in the United States: Association with Changes in Professional Guidelines’ recommendations. 2020. Thyroid; 2020; 30(8):1132-40. https://doi.org/10.1089/thy.2019.0415 .
Lin B, MaH, Ma M, Zhang Z, Sun Z, Hsieh IY, Okenwa O, Guan H, Li J, Lv W. The incidence and survival analysis for anaplastic thyroid cancer: a SEER database analysis. Am J Transl Res. 2019;11(9):5888–96. https://doi.org/10.2147/OTT.S107913 .
doi: 10.2147/OTT.S107913
pubmed: 31632557
pmcid: 6789224
Hvilsom GB, Londero SC, Hahn CH, Schytte S, Pedersend HB, Christiansen P, Kiss KLarsen SR, Jespersen ML, Lelkaitisi G, Godballea C. Anaplastic thyroid carcinoma in Denmark 1996–2012: a national prospective study of 219 patients. Cancer Epidemiol. 2018;53:65–71. https://doi.org/10.1016/j.canep.2018.01.011 .
doi: 10.1016/j.canep.2018.01.011
pubmed: 29414634
Locati L, Cavalieri S, Dal Maso L, Busco S, Anderson L, Botta L, Bento MJ, Carulla M, Chirlaque López MD, Fusco M, Guevara M, Innos K, Johannesen TB, Micallef R, Minicozzi P, Panato C, Petrova D, Rubio-Casadevall J, Smailyte G, Vitale MF, Trama A. The RARECAREnet Working Group. Rare thyroid malignancies in Europe: data from the information network on rare cancers in Europe (RARECAREnet). Oral Oncol. 2020;108:104766.
doi: 10.1016/j.oraloncology.2020.104766
pubmed: 32454415
Janz TA, Neskey DM, Nguyen SA, Lentsch EJ. Is the incidence of anaplastic thyroid cancer increasing: a population based epidemiology study. World J Otorhinolaryngol Head Neck Surg. 2018;5(1):34–40. https://doi.org/10.1016/j.wjorl.2018.05.006 .
doi: 10.1016/j.wjorl.2018.05.006
pubmed: 30775700
pmcid: 6364517
de Ridder M, van Dijkum EN, Engelsman A, Kapiteijn E, Klümpen HJ, Rasch CRN Anaplastic thyroid carcinoma: a nationwide cohort study on incidence, treatment and survival in the Netherlands over 3 decades. Eur J Endocrinol. 2020;183(2):203–9. https://doi.org/10.1530/EJE-20-0080 .
doi: 10.1530/EJE-20-0080
pubmed: 32460234
Tavarelli M, Malandrino P, Vigneri P, Richiusa P, Maniglia A, Violi M, Sapuppo G, Vella V, Dardanoni G, Vigneri R, Pellegriti G. Anaplastic thyroid cancer in Sicily: the role of environmental characteristics. Front Endocrinol (Lausanne). 2017;20(8):277. https://doi.org/10.3389/fendo.2017.00277 .
doi: 10.3389/fendo.2017.00277
Xu B, Fuchs T, Dogan S, Landa I, Katabi N, Fagin JA, Tuttle RM, Sherman E, Gill AJ, Ghossein R. Dissecting anaplastic thyroid carcinoma: a comprehensive clinical, histologic, immunophenotypic, and molecular study of 360 cases. Thyroid. 2020;30(10):1505–17. https://doi.org/10.1089/thy.2020.0086 .
doi: 10.1089/thy.2020.0086
pubmed: 32284020
pmcid: 7583343
Wendler J, Kroiss M, Gast K, Kreissl M, Allelein S, Lichtenauer U, Blaser R, Spitzweg C, Fassnacht M, Schott M, Führer D, Tiedje V. Clinical presentation, treatment and outcome of anaplastic thyroid carcinoma: results of a multicenter study in Germany. Eur J Endocrinol. 2016;175(6):521–9. https://doi.org/10.1530/EJE-16-0574 .
doi: 10.1530/EJE-16-0574
pubmed: 27926471
Zivaljevic V, Slijepcevic N, Paunovic I, Diklik A, Kalezic N, Marinkovic J, Zivic R, Vekic B, Sipetic S. Risk factors for anaplastic thyroid cancer. Int J Endocrinol. 2014; 815070. https://doi.org/10.1155/2014/815070 .
Ma J, Huang M, Wang L, Ye W, Tong Y, Wang H. Obesity and risk of thyroid cancer: evidence from a meta-analysis of 21 observational studies. Med Sci Monit. 2015;21:283–91. https://doi.org/10.12659/MSM.892035 .
doi: 10.12659/MSM.892035
pubmed: 25612155
pmcid: 4315628
Kitamura Y, Shimizu K, Nagahama M, Sugino K, Ozaki O, Mimura T, Ito K, Ito K, Tanaka S. Immediate causes of death in thyroid carcinoma: clinicopathological analysis of 161 fatal cases. J Clin Endocrinol Metab. 1999;84:4043–9.
doi: 10.1210/jcem.84.11.6115
pubmed: 10566647
Du B, Wang F, Wu L, Wang Z, Zhang D, Huang Z, Gao L, Li Y, Liang C, Li P, Yao R. Cause-specific mortality after diagnosis of thyroid cancer: a large population-based study. Endocrine. 2021;72(1):179–89. https://doi.org/10.1007/s12020-020-02445-8 .
doi: 10.1007/s12020-020-02445-8
pubmed: 32770440
Yamazaki H, Sugino K, Katoh R, Masudo K, Matsuzu K, Kitagawa W, Nagahama M, Rino Y, Ito K. Impact of Local Control on Clinical Course in Stage IVC anaplastic thyroid carcinoma. World J Surg. 2022;46(12):3034–42. https://doi.org/10.1007/s00268-022-06739-y .
doi: 10.1007/s00268-022-06739-y
pubmed: 36127501
Mirian C, Grønhøj C, Jensen DH, Jakobsen KK, Karnov K, Jensen JS, Hahn CH, Kitmoller TA, Bentzen J, von Buchwald C. Trends in thyroid cancer: retrospective analysis of incidence and survival in Denmark 1980–2014. Cancer Epidemiol. 2018;55:81–7. https://doi.org/10.1089/thy.2018.0067 .
doi: 10.1089/thy.2018.0067
pubmed: 29852396
Maniakas A, Dadu R, Busaidy N, Wang J, Ferrarotto R, Lu C, Williams M, Gunn GB, Hofmann MC, Cote G, Sperling J, Gross N, Sturgis E, Goepfert R, Lai S, Cabanillas ME, Zafereo M. Evaluation of overall survival in patients with anaplastic thyroid carcinoma, 2000–2019. JAMA Oncol. 2020;6(9):1397–404. https://doi.org/10.1001/jamaoncol.2020.3362 .
doi: 10.1001/jamaoncol.2020.3362
pubmed: 32761153
Nagaiah G, Hossain A, Mooney CJ, Parmentier J, Remick SC. Anaplastic thyroid cancer: a review of epidemiology, pathogenesis, and treatment. J Oncol. 2011;2011:542358. https://doi.org/10.1155/2011/542358 .
doi: 10.1155/2011/542358
pubmed: 21772843
pmcid: 3136148
Pozdeyev N, Gay L, Sokol E, Hartmaier R, Deaver K, Davis S, French J, Vanden Borre P, LaBarbera D, Tan A, Schweppe R, Fishbein L, Ross J. Haugen B1, Bowles D. Genetic analysis of 779 advanced differentiated and anaplastic thyroid cancers. Clin Cancer Res. 2018;24(13):3059–68. https://doi.org/10.1158/1078-0432.CCR-18-0373 .
doi: 10.1158/1078-0432.CCR-18-0373
pubmed: 29615459
pmcid: 6030480
Landa I, Ibrahimpasic T, Boucai L, Sinha R, Knauf J, Shah R, Dogan S, Ricarte-Filho J, Krishnamoorthy G, Xu B, Schultz N, Berger M, Sander C, Taylor B, Ghossein R, Ganly I, Fagin J. Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers. J Clin Invest. 2016;126(3):1052–66. https://doi.org/10.1172/JCI85271 .
doi: 10.1172/JCI85271
pubmed: 26878173
pmcid: 4767360
Agrawal N, Cancer Genome Atlas Research Consortium. Integrated Genomic Characterization of Papillary Thyroid Carcinoma. Cell. 2014; 159 (3): 676 – 90. https://doi.org/10.1016/j.cell.2014.09.050 .
Tavares C, Melo M, Cameselle-Teijeiro JM, Soares P, Sobrinho-Simoes M. Endocrine tumours: genetic predictors of thyroid cancer outcome. Eur J Endocrinol. 2016;174:R117–26. https://doi.org/10.1530/EJE-15-0605 .
doi: 10.1530/EJE-15-0605
pubmed: 26510840
Yoo SK, Song YS, Lee EK, Hwang J, Kim HH, Jung G, Kim YA, Kim SJ, Cho SW, Won JK, Chung EJ, Shin JY, Lee KE, Kim JI, Park YJ, Seo JS. Integrative analysis of genomic and transcriptomic characteristics associated with progression of aggressive thyroid cancer. Nat Commun. 2019;10:2764.
doi: 10.1038/s41467-019-10680-5
pubmed: 31235699
pmcid: 6591357
Wang JR, Montierth M, Xu L, Goswami M, Zhao X, Cote G, Wang W, Iyer P, Dadu R, Busaidy NL, Lai SY, Gross ND, Ferrarotto R, Lu C, Gunn GB, Williams MD, Routbort M, Zafereo ME, Cabanillas ME. Impact of somatic mutations on survival outcomes in patients with anaplastic thyroid carcinoma. JCO Precis Oncol. 2022;6:e2100504.
doi: 10.1200/PO.21.00504
pubmed: 35977347
Tiedje V, Ting S, Herold T, Synoracki S, Latteyer S, Moeller L, Zwanziger D, Stuschke M, Fuehrer D, Werner Schmid K. NGS based identification of mutational hotspots for targeted therapy in anaplastic thyroid carcinoma. Oncotarget. 2017;8(26):42613–20. https://doi.org/10.18632/oncotarget.17300 .
doi: 10.18632/oncotarget.17300
pubmed: 28489587
pmcid: 5522092
Zhang L, Ren Z, Su Z, Liu Y, Yang T, Cao M, Jiang Y, Tang Y, Chen H, Zhang W, Gong R, Wei T, Peng Y, Liu B, Zhang W, Yang L, Hu Y, Li Z, Zhu J, Xu H, Shu Y, Luo H. Novel recurrent altered genes in chinese patients with anaplastic thyroid cancer. J Clin Endocrinol Metab. 2021;106(4):988–98. https://doi.org/10.1210/clinem/dgab014 .
doi: 10.1210/clinem/dgab014
pubmed: 33428730
Kunstman J, Christofer Juhlin C, Goh G, Brown T, Stenman A, Healy J, Rubinstein J, Choi M, Kiss N, Nelson-Williams C, Mane S, Rimm D, Prasad M, Höög A, Zedenius J, Larsson C, Korah R, Lifton R, Carling T. Characterization of the mutational landscape of anaplastic thyroid cancer via whole-exome sequencing. Hum Mol Genet. 2015;24(8):2318–29. https://doi.org/10.1093/hmg/ddu749 .
doi: 10.1093/hmg/ddu749
pubmed: 25576899
pmcid: 4380073
Duan H, Li Y, Hu P, Gao J, Ying J, Xu W, Zhao D, Wang Z, Ye J, Lizaso A, He Y, Wu H, Liang Z. Mutational profiling of poorly differentiated and anaplastic thyroid carcinoma by the use of targeted next-generation sequencing. Histopathology. 2019;75(6):890–9. https://doi.org/10.1111/his.13942 .
doi: 10.1111/his.13942
pubmed: 31230400
Volante M, Lam AK, Papotti M, Tallini G. Molecular Pathology of poorly differentiated and anaplastic thyroid Cancer: what do pathologists need to know? Endocr Pathol. 2021;32(1):63–76. https://doi.org/10.1007/s12022-021-09665-2 .
doi: 10.1007/s12022-021-09665-2
pubmed: 33543394
pmcid: 7960587
Qiao PP, Tian KS, Han LT, Ma B, Shen CK, Zhao RY, Zhang Y, Wei WJ, Chen XP. Correlation of mismatch repair deficiency with clinicopathological features and programmed death-ligand 1 expression in thyroid carcinoma. Endocrine. 2022;76(3):660–70. https://doi.org/10.1007/s12020-022-03031-w .
doi: 10.1007/s12020-022-03031-w
pubmed: 35366156
Lu L, Wang JR, Henderson YC, Bai S, Yang J, Hu M, Shiau CK, Pan T, Yan Y, Tran TM, Li J, Kieser R, Zhao X, Wang J, Nurieva R, Williams MD, Cabanillas ME, Dadu R, Busaidy NL, Zafereo M, Navin N, Lai SY, Gao R. Anaplastic transformation in thyroid cancer revealed by single-cell transcriptomics. J Clin Invest. 2023;133(11):e169653. https://doi.org/10.1172/JCI169653 .
doi: 10.1172/JCI169653
pubmed: 37053016
pmcid: 10231997
NCCN clinical practice guidelines in oncology. Thyroid carcinoma (version 2.23-May 18,2023). In: https://www.nccn.org/professionals/physician_gls/pdf/thyroid.pdf . Accessed 3, Jul 2023.
Bible K, Kebebew E, Brierley J, Brito J, Cabanillas ME, Clark TJ Jr, Di Cristofano A, Foote R, Giordano T, Kasperbauer J, Newbold K, Nikiforov Y, Randolph G, Rosenthal MS, Sawka A, Shah M, Shaha A, Smallridge R, Wong-Clark C. 2021 american thyroid Association Guidelines for management of patients with anaplastic thyroid cancer. Thyroid. 2021;31(3):337–86. https://doi.org/10.1089/thy.2020.0944 .
doi: 10.1089/thy.2020.0944
pubmed: 33728999
pmcid: 8349723
Shonka D, Ho A, Chintakuntlawar A, Geiger J, Park J, Seetharamu N, Ryder M, Shin J, Lori J, Wirth, Ahmed A, Brose M, Jasim S, Bible K, Cabanillas M, Davies L, William C, Faquin, Ghossein R, Gopal R, Miyauchi A, Nikiforov Y, Ringel M, Dabekaussen K, Dias-Santagata D, Robinson B, Sherman E, Peter M, Sadow S Jr, Tuttle B, Zafereo RM, Randolph M. Genomic testing in thyroid 2022 American Head and Neck Society endocrine surgery section and international thyroid Oncology Group consensus statement on mutational testing in thyroid cancer: defining advanced thyroid cancer and its targeted treatment. Head Neck. 2022;44(6):1277–300. https://doi.org/10.1002/hed.27025 .
doi: 10.1002/hed.27025
pubmed: 35274388
pmcid: 9332138
Filetti S, Durante C, Hartl D, Leboulleux S, Locati L, Newbold K, Papotti M, Berruti A. Thyroid cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2019;30(12):1856–83. https://doi.org/10.1093/annonc/mdz400 .
doi: 10.1093/annonc/mdz400
pubmed: 31549998
Ahn S, Kim TH, Kim SW, Ki CS, Jang HW, Kim JS, Kim JH, Choe JH, Shin JH, Hahn SY, Oh YL, Chung JH. Comprehensive screening for PD-L1 expression in thyroid cancer. Endocr Relat Cancer. 2017;24(2):97–106. https://doi.org/10.1530/ERC-16-0421 .
doi: 10.1530/ERC-16-0421
pubmed: 28093480
Zwaenepoel K, Jacobs J, De Meulenaere A, Silence K, Smits E, Siozopoulou V, Hauben E, Rolfo C, Rottey S, Pauwels P. CD70 and PD-L1 in anaplastic thyroid cancer - promising targets for immunotherapy. Histopathology. 2017;71(3):357–65. https://doi.org/10.1111/his.13230 .
doi: 10.1111/his.13230
pubmed: 28383817
Bastman JJ, Serracino HS, Zhu Y, Koenig MR, Mateescu V, Sams SB, Davies KD, Raeburn CD, McIntyre RC Jr, Haugen BR, French JD. Tumor-infiltrating T cells and the PD-1 checkpoint pathway in advanced differentiated and anaplastic thyroid cancer. J Clin Endocrinol Metab. 2016;101(7):2863–73. https://doi.org/10.1210/jc.2015-4227 .
doi: 10.1210/jc.2015-4227
pubmed: 27045886
pmcid: 4929840
Chintakuntlawar AV, Rumilla KM, Smith CY, Jenkins SM, Foote RL, Kasperbauer JL, Morris JC, Ryder M, Alsidawi S, Hilger C, Bible KC. Expression of PD-1 and PD-L1 in anaplastic thyroid cancer patients treated with multimodal therapy: results from a retrospective study. J Clin Endocrinol Metab. 2017;102(6):1943–50. https://doi.org/10.1210/jc.2016-3756 .
doi: 10.1210/jc.2016-3756
pubmed: 28324060
Cantara S, Bertelli E, Occhini R, Regoli M, Brilli L, Pacini F, Castagna MG, Toti P. Blockade of the programmed death ligand 1 (PD-L1) as potential therapy for anaplastic thyroid cancer. Endocrine. 2019;64(1):122–9. https://doi.org/10.1007/s12020-019-01865-5 .
doi: 10.1007/s12020-019-01865-5
pubmed: 30762153
Adam P, Kircher S, Sbiera I, Koehler VF, Berg E, Knösel T, Sandner B, Fenske WK, Bläker H, Smaxwil C, Zielke A, Sipos B, Allelein S, Schott M, Dierks C, Spitzweg C, Fassnacht M, Kroiss M. FGF-Receptors and PD-L1 in anaplastic and poorly differentiated thyroid Cancer: evaluation of the Preclinical Rationale. Front Endocrinol (Lausanne). 2021;12:712107. https://doi.org/10.3389/fendo.2021.712107 .
doi: 10.3389/fendo.2021.712107
pubmed: 34475850
Cameselle-García S, Abdulkader-Sande S, Sánchez-Ares M, Rodríguez-Carnero G, Garcia-Gómez J, Gude-Sampedro F, Abdulkader-Nallib I, Cameselle-Teijeiro JM. PD-L1 expression and immune cells in anaplastic carcinoma and poorly differentiated carcinoma of the human thyroid gland: a retrospective study. Oncol Lett. 2021;22(1):553. https://doi.org/10.3892/ol.2021.12814 .
doi: 10.3892/ol.2021.12814
pubmed: 34093774
pmcid: 8170268
Caillou B, Talbot M, Weyemi U, Pioche-Durieu C, Al Ghuzlan A, Bidart JM, Chouaib S, Schlumberger M, Dupuy C. Tumor-associated macrophages (TAMs) form an interconnected cellular supportive network in anaplastic thyroid carcinoma. PLoS ONE. 2011;6(7):e22567. https://doi.org/10.1371/journal.pone.0022567 .
doi: 10.1371/journal.pone.0022567
pubmed: 21811634
pmcid: 3141071
Lv J, Feng ZP, Chen FK, Liu C, Jia L, Liu PJ, Yang CZ, Hou F, Deng ZY. M2-like tumor-associated macrophages-secreted Wnt1 and Wnt3a promotes dedifferentiation and metastasis via activating β-catenin pathway in thyroid cancer. Mol Carcinog. 2021;60(1):25–37. https://doi.org/10.1002/mc.23268 .
doi: 10.1002/mc.23268
pubmed: 33283877
Lv J, Liu C, Chen FK, Feng ZP, Jia L, Liu PJ, Yang ZX, Hou F, Deng ZY. M2like tumourassociated macrophagesecreted IGF promotes thyroid cancer stemness and metastasis by activating the PI3K/AKT/mTOR pathway. Mol Med Rep. 2021;24(2):604. https://doi.org/10.3892/mmr.2021.12249 .
doi: 10.3892/mmr.2021.12249
pubmed: 34184083
pmcid: 8258465
Luo Y, Yang YC, Ma B, Xu WB, Liao T, Wang Y. Integrated analysis of novel macrophage related signature in anaplastic thyroid cancer. Endocrine. 2022;78(3):517–30. https://doi.org/10.1007/s12020-022-03179-5 .
doi: 10.1007/s12020-022-03179-5
pubmed: 36070052
Baloch ZW, Asa SL, Barletta JA, Ghossein RA, Juhlin CC, Jung CK, LiVolsi VA, Papotti MG, Sobrinho-Simões M, Tallini G, Mete O. Overview of the 2022 WHO classification of thyroid neoplasms. Endocr Pathol. 2022;33(1):27–63. https://doi.org/10.1007/s12022-022-09707-3 .
doi: 10.1007/s12022-022-09707-3
pubmed: 35288841
Kondo T, Ezzat S, Asa SL. Pathogenetic mechanisms in thyroid follicular-cell neoplasia. Nat Rev Cancer. 2006;6(4):292–306. https://doi.org/10.1038/nrc1836 .
doi: 10.1038/nrc1836
pubmed: 16557281
Quiros RM, Ding HG, Gattuso P, Prinz RA, Xu X. Evidence that one subset of anaplastic thyroid carcinomas are derived from papillary carcinomas due to BRAF and p53 mutations. Cancer. 2005;103(11):2261–8.
doi: 10.1002/cncr.21073
pubmed: 15880523
Smallridge RC, Marlow LA, Copland JA. Anaplastic thyroid cancer: molecular pathogenesis and emerging therapies. Endocr Relat Cancer. 2009;16(1):17–44. https://doi.org/10.1677/ERC-08-0154 .
doi: 10.1677/ERC-08-0154
pubmed: 18987168
Jannin A, Escande A, Al Ghuzlan A, Blanchard P, Hartl D, Chevalier B, Deschamps F, Lamartina L, Lacroix L, Dupuy C, Baudin E, Do Cao C, Hadoux J. Anaplastic thyroid carcinoma: an update. Cancers (Basel). 2022;14(4):1061. https://doi.org/10.3390/cancers14041061 .
doi: 10.3390/cancers14041061
pubmed: 35205809
Aldinger KA, Samaan NA, Ibanez M, Hill CS Jr. Anaplastic carcinoma of the thyroid: a review of 84 cases of spindle and giant cell carcinoma of the thyroid. Cancer. 1978;41(6):2267–75. https://doi.org/10.1002/1097-0142(197806)41:6%3C2267: . aid-cncr2820410627 > 3.0.co;2–7.
doi: 10.1002/1097-0142(197806)41:6<2267
pubmed: 657091
Hahn SY, Shin JH. Description and comparison of the Sonographic characteristics of poorly differentiated thyroid carcinoma and anaplastic thyroid carcinoma. J Ultrasound Med. 2016;35(9):1873–9. https://doi.org/10.7863/ultra.15.09058 .
doi: 10.7863/ultra.15.09058
pubmed: 27388812
Takashima S, Morimoto S, Ikezoe J, Takai S, Kobayashi T, Koyama H, Nishiyama K, Kozuka T. CT evaluation of anaplastic thyroid carcinoma. AJR Am J Roentgenol. 1990;154(5):1079–85. https://doi.org/10.2214/ajr.154.5.2108546 .
doi: 10.2214/ajr.154.5.2108546
pubmed: 2108546
Lee JW, Yoon DY, Choi CS, Chang SK, Yun EJ, Seo YL, Rho YS, Cho SJ, Kim KH. Anaplastic thyroid carcinoma: computed tomographic differentiation from other thyroid masses. Acta Radiol. 2008;49(3):321–7. https://doi.org/10.1080/02841850701813120 .
doi: 10.1080/02841850701813120
pubmed: 18365821
Miyakoshi A, Dalley RW, Anzai Y. Magnetic resonance imaging of thyroid cancer. Top Magn Reson Imaging. 2007;18(4):293–302. https://doi.org/10.1097/RMR.0b013e318572b76 .
doi: 10.1097/RMR.0b013e318572b76
pubmed: 17893594
Poisson T, Deandreis D, Leboulleux S, Bidault F, Bonniaud G, Baillot S, Aupérin A, Al Ghuzlan A, Travagli JP, Lumbroso J, Baudin E, Schlumberger M. 18F-fluorodeoxyglucose positron emission tomography and computed tomography in anaplastic thyroid cancer. Eur J Nucl Med Mol Imaging. 2010;37(12):2277–85. https://doi.org/10.1007/s00259-010-1570-6 . Epub 2010 Aug 6.
doi: 10.1007/s00259-010-1570-6
pubmed: 20694463
Bogsrud TV, Karantanis D, Nathan MA, Mullan BP, Wiseman GA, Kasperbauer JL, Reading CC, Hay ID, Lowe VJ. 18F-FDG PET in the management of patients with anaplastic thyroid carcinoma. Thyroid. 2008;18(7):713–9. https://doi.org/10.1089/thy.2007.0350 .
doi: 10.1089/thy.2007.0350
pubmed: 18630999
El-Naggar AK, Baloch ZW, Eng C, Evans HL, Fagin JA, Faquin WC, Fellegara C, Franssila KO, Giuffrida D, Katoh R, Kebebew E, Kondo T, Matias-Guiu X, Nikiforov YE, Papotti M, Smallridge R, Sugitani I, Tallini G, Wakely PE, Westra WH, Wick MR, Williams MD. Anaplastic thyroid carcinoma. In: Lloyd RV, Osamura RY, Kloppel G, Rosai J, editors. WHO Classification of tumours of endocrine organs.4
Deeken-Draisey A, Yang GY, Gao J, Alexiev BA. Anaplastic thyroid carcinoma: an epidemiologic, histologic, immunohistochemical, and molecular single-institution study. Hum Pathol. 2018;82:140–8. https://doi.org/10.1016/j.humpath.2018.07.027 .
doi: 10.1016/j.humpath.2018.07.027
pubmed: 30075157
Laury AR, Perets R, Piao H, Krane JF, Barletta JA, French C, Chirieac LR, Lis R, Loda M, Hornick JL, Drapkin R, Hirsch MS. A comprehensive analysis of PAX8 expression in human epithelial tumors. Am J Surg Pathol. 2011;35(6):816–26. https://doi.org/10.1097/PAS.0b013e318216c112 .
doi: 10.1097/PAS.0b013e318216c112
pubmed: 21552115
Smith AL, Williams MD, Stewart J, Wang WL, Krishnamurthy S, Cabanillas ME, Roy-Chowdhuri S. Utility of the BRAF p.V600E immunoperoxidase stain in FNA direct smears and cell block preparations from patients with thyroid carcinoma. Cancer Cytopathol. 2018;126(6):406–13. https://doi.org/10.1002/cncy.21992 .
doi: 10.1002/cncy.21992
pubmed: 29579361
Brierley J, Gospodarowicz M, Wittekind C. TNM classification of malignant tumours. 8th ed. Hoboken, NJ, USA: John Wiley & Sons; 2017.
Cabanillas M, Williams M, Gunn GB, Weitzman S, Burke L, Busaidy N, Ying A, Yiin Y, Lu C, Lai S. Facilitating anaplastic thyroid cancer specialized treatment: a model for improving access to multidisciplinary care for patients with anaplastic thyroid cancer.Head Neck. 2017; 39(7):1291–5. https://doi.org/10.1002/hed.24784 .
Wächter S, Vorländer C, Schabram J, Mintziras I, Fülber I, Manoharan J, Holzer K, Bartsch DK, Maurer E. Eur Arch Otorhinolaryngol. 2020;277(5):1507–14. https://doi.org/10.1007/s00405-020-05853-8 .
doi: 10.1007/s00405-020-05853-8
pubmed: 32060602
Paiva CE, Preto DD, de Lima C, Paiva BSR. To treat or not to treat? Dilemmas when deciding on antineoplastic treatment in patients with far advanced cancers. Cancer Control. 2023;30:10732748231176639. https://doi.org/10.1177/10732748231176639 .
doi: 10.1177/10732748231176639
pubmed: 37178323
pmcid: 10184254
Moyer K, Marcadis A, Shaha A. Airway management, symptom relief, and best supportive care in anaplastic thyroid cancer. Curr Opin Otolaryngol Head Neck Surg. 2020;28(2):74–8.
doi: 10.1097/MOO.0000000000000619
pubmed: 32022733
pmcid: 7360336
Shaha AR, Ferlito A, Owern RP, Silver CE, Rodrigo JP, Haigetnz M Jr, Mendenhall WM, Rinaldo A, Smallridge RC. Eur Arch Otorhinolaryngol. 2013;270(10):2579–83. https://doi.org/10.1007/s00405-013-2556-3 .
doi: 10.1007/s00405-013-2556-3
pubmed: 23689802
Brignardello E, Gallo M, Baldi I, Palestrini N, Piovesan A, Grossi E, Ciccone G, Boccuzzi G. 2007 anaplastic thyroid carcinoma: clinical outcome of 30 consecutive patients referred to a single institution in the past 5 years. Eur J Endocrinol. 2007;156(4):425–30. https://doi.org/10.1530/EJE-06-0677 .
doi: 10.1530/EJE-06-0677
pubmed: 17389456
Brignardello E, Palestini N, Felicetti F, Castiglione A, Piovesan A, Gallo M, Freddi M, Ricardi U, Gasparri G, Ciccone G, Arvat E, Boccuzzi G. Early surgery and survival of patients with anaplastic thyroid carcinoma: analysis of a case series referred to a single institution between 1999 and 2012. Thyroid. 2014;24(11):1600–6. https://doi.org/10.1089/thy.2014.0004 .
doi: 10.1089/thy.2014.0004
pubmed: 25110922
McIver B, Hay ID, Giuffrida DF, Dvorak CE, Grant CS, Thompson GB, van Heerden JA, Goellner JR. Anaplastic thyroid carcinoma: a 50-year experience at a single institution. Surgery. 2001;130(6):1028–34. https://doi.org/10.1067/msy.2001.118266 .
doi: 10.1067/msy.2001.118266
pubmed: 11742333
Goffredo P, Thomas SM, Adam MA, Sosa JA, Roman SA. Impact of timeliness of resection and thyroidectomy margin status on survival for patients with anaplastic thyroid cancer: an analysis of 335 cases. Ann Surg Oncol. 2015;22(13):4166–74. https://doi.org/10.1245/s10434-015-4742-6 .
doi: 10.1245/s10434-015-4742-6
pubmed: 26271394
Sugitani I, Onoda N, Ito K, Suzuki S. Management of anaplastic thyroid carcinoma: the fruits from the ATC Research Consortium of Japan. J Nippon Med Sch. 2018;85:18–27. https://doi.org/10.1272/jnms.2018_85-3 .
doi: 10.1272/jnms.2018_85-3
pubmed: 29540641
Baek SK, Lee MC, Hah JH, Ahn SH, Son YI, Rho YS, Chung PS, Lee YS, Koo BS, Jung KY, Lee BJ. Role of surgery in the management of anaplastic thyroid carcinoma: korean nationwide multicenter study of 329 patients with anaplastic thyroid carcinoma, 2000 to 2012. Head Neck. 2016;39(1):133–9. https://doi.org/10.1002/hed.24559 .
doi: 10.1002/hed.24559
pubmed: 27534388
Hu S, Helman S, Hanly E, Likhterov I. The role of surgery in anaplastic thyroid cancer: a systematic review. Am J Otolaryngol. 2017;38(3):337–50. https://doi.org/10.1016/j.amjoto.2017.02.005 .
doi: 10.1016/j.amjoto.2017.02.005
pubmed: 28366512
Xu B, Zhang L, Setoodeh R, Mohanty AS, Landa I, Balzer B, Tiedje V, Ganly I, Dogan S, Fagin JA, Ghossein R. Prolonged survival of anaplastic thyroid carcinoma is associated with resectability, low tumor-infiltrating neutrophils/myeloid-derived suppressor cells, and low peripheral neutrophil-to-lymphocyte ratio. Endocrine. 2022;76(3):612–19. https://doi.org/10.1007/s12020-022-03008-9 .
doi: 10.1007/s12020-022-03008-9
pubmed: 35149932
pmcid: 10173871
Song T, Chen L, Zhang H, Lu Y, Yu K, Zhan W, Fang M. Multimodal treatment based on thyroidectomy improves survival in patients with metastatic anaplastic thyroid carcinoma: a SEER analysis from 1998 to 2015. Gland Surg. 2020;9(5):1205–13. https://doi.org/10.21037/gs-20-503 .
doi: 10.21037/gs-20-503
pubmed: 33224795
pmcid: 7667089
Kwon J, Kim B, Jung HW, Besic N, Sugitani I, Wu HG. The prognostic impacts of postoperative radiotherapy in the patients with resected anaplastic thyroid carcinoma: a systematic review and meta-analysis. Eur J Cancer. 2016;59:34–45. https://doi.org/10.1016/j.ejca.2016.02.015 .
doi: 10.1016/j.ejca.2016.02.015
pubmed: 27014798
Saeed N, Kelly J, Deshpande H, Bhatia A, Burtness B, Judson B, Mehra S, Edwards H, Yarbrough W, Peter P, Holt E, Decker R, Husai Z, Park H. Adjuvant external beam radiotherapy for surgically resected, nonmetastatic anaplastic thyroid cancer. Head Neck. 2020;1–14. https://doi.org/10.1002/hed.26086 .
Goodsell K, ERmer J, Amjad W, Swisher-McClure S, Wachtel H. External beam radiotherapy for thyroid cancer: patients, complications, and survival. Am J Surg. 2023;225(6):994–9. https://doi.org/10.1016/j.amjsurg.2023.01.009 .
doi: 10.1016/j.amjsurg.2023.01.009
pubmed: 36707300
Fan D, Ma J, Bell A, Groen A, Olsen K, Lok B, Leeman J, Anderson E, Riaz N, McBride S, Ganly I, Shaha A, Sherman E, Tsai CJ, Kang JK, Lee N. Outcomes of multimodal therapy in a large series of patients with anaplastic thyroid cancer. Cancer. 2020;126(2):444–52. https://doi.org/10.1002/cncr.32548 .
doi: 10.1002/cncr.32548
pubmed: 31593317
Jacob J, Vordermakr D, Lorenz K, Medenwald D. Prognostic factors in radiotherapy of anaplastic thyroid carcinoma: a single center study over 31 years. Radiat Oncol. 2023;18(1):71. https://doi.org/10.1186/s13014-023-02249-w .
doi: 10.1186/s13014-023-02249-w
pubmed: 37076888
pmcid: 10114488
Gao R, Foote R, Garces Y, Ma D, Neben-Witticha M, Toutman D, Patel S, Ko S, McGee L, Bible K, Chintakuntlawar A, Ryder M, Morris J, Van Abel K, Rivera M, Abraha F, Lester S. Outcomes and patterns of recurrence for anaplastic thyroid cancer treated with comprehensive chemoradiotherapy. Pract Radiat Oncol. 2022;12(2):113–9. https://doi.org/10.1016/j.prro.2021.10.006 .
doi: 10.1016/j.prro.2021.10.006
pubmed: 34715395
Zhou W, Yue Y, Zhang X. Radiotherapy plus chemotherapy leads to prolonged survival in patients with anaplastic thyroid cancer compared with radiotherapy alone regardless of surgical resection and distant metastasis: a retrospective population study. Front Endocrinol (Lausanne). 2021;12:748023. https://doi.org/10.3389/fendo.2021.748023 .
doi: 10.3389/fendo.2021.748023
pubmed: 34790169
Tian S, Switchenko JM, Fei T, Press RH, Abugideri M, Saba NF, Owonikoko TK, Chen AY, Beitler JJ, Curran WJ, Gillespie TW, Higgins KA. .Survival advantage of chemoradiotherapy in anaplastic thyroid carcinoma: propensity score matched analysis with multiple subgroups. Head Neck. 2020;42(4):678–87. https://doi.org/10.1002/hed.26042 .
doi: 10.1002/hed.26042
pubmed: 31845469
Rao SN, Zafereo M, Dadu R, Busaidy NL, Hess K, Cote GJ, Williams MD, William WN, Sandulache V, Gross N, Gunn GB, Lu C, Ferrarotto R, Lai SY, Cabanillas ME. Thyroid. 2017;27(5):672–81. https://doi.org/10.1089/thy.2016.0395 .
doi: 10.1089/thy.2016.0395
pubmed: 28068873
pmcid: 5802249
Park J, Jung HA, Shim JH, Park WY, Kim TH, Lee SH, Kim SW, Ahn MJ, Park K, Chung JH. Multimodal treatments and outcomes for anaplastic thyroid cancer before and after tyrosine kinase inhibitor therapy: a real-world experience. Eur J Endocrinol. 2021;184(6):837–45. https://doi.org/10.1530/EJE-20-1482 .
doi: 10.1530/EJE-20-1482
pubmed: 33852431
Guerra A, Di Crescenzo V, Garzi A, Cinelli M, Carlomagno C, Tonacchera M, Zeppa P, Vitale M. Genetic mutations in the treatment of anaplastic thyroid cancer: a systematic review. BMC Surg. 2013;13(Suppl 2):44. https://doi.org/10.1186/1471-2482-13-S2-S44 .
doi: 10.1186/1471-2482-13-S2-S44
Subbiah V, Kreitman RJ, Wainberg ZA, Cho JY, Schellens JHM, Soria JC, Wen PY, Zielinski C, Cabanillas ME, Urbanowitz G, Mookerjee B, Wang D, Rangwala F, Keam B. Dabrafenib and trametinib treatment in patients with locally advanced or metastatic BRAF V600-mutant anaplastic thyroid cancer. J Clin Oncol. 2018;36(1):7–13. https://doi.org/10.1200/JCO.2017.73.6785 .
doi: 10.1200/JCO.2017.73.6785
pubmed: 29072975
Lorimer C, Cheng L, Chandler R, Garcez K, Gill V, Graham K, Grant W, Sardo Infirri S, Wadsley J, Wall L, Webber N, Wong KH, Newbold K. Dabrafenib and trametinib therapy for advanced anaplastic thyroid cancer - real-world outcomes from UK centres. Clin Oncol (R Coll Radiol). 2023;35(1):e60–6. https://doi.org/10.1016/j.clon.2022.10.017 .
doi: 10.1016/j.clon.2022.10.017
pubmed: 36379836
Bueno F, Smulever A, Califano I, Guerra J, Del Grecco A, Carrera JM, Giglio R, Rizzo M, Lingua A, Voogd A, Negueruela MDC, Abelleira E, Pitoia F. Dabrafenib plus trametinib treatment in patients with anaplastic thyroid carcinoma: an argentinian experience. Endocrine. 2023;80(1):134–41. https://doi.org/10.1007/s12020-022-03295-2 .
doi: 10.1007/s12020-022-03295-2
pubmed: 36617605
pmcid: 9838471
Study of Cemiplimab Combined With Dabrafenib and Trametinib in People With. Anaplastic Thyroid Cancer. https://www.clinicaltrials.gov/study/NCT04238624 . Accessed August 1, 2023.
Hyman DM, Puzanov I, Subbiah V, Faris JE, Chau I, Blay JY, Wolf J, Raje NS, Diamond EL, Hollebecque A, Gervais R, Elez-Fernandez ME, Italiano A, Hofheinz RD, Hidalgo M, Chan E, Schuler M, Lasserre SF, Makrutzki M, Sirzen F, Veronese ML, Tabernero J, Baselga J. Vemurafenib in Multiple Nonmelanoma Cancers with BRAF V600 Mutations. N Engl J Med. 2015;373(8):726 – 36. https://doi.org/10.1056/NEJMoa1502309 . Erratum in: N Engl J Med. 2018;379(16):1585.
https:// www.clinicaltrials.gov/study/NCT05768178 . Accessed August 1, 2023.
Cabanillas ME, Dadu R, Iyer P, Wanland KB, Busaidy NL, Ying A, Gule-Monroe M, Wang JR, Zafereo M, Hofmann MC. Acquired secondary RAS mutation in BRAF
doi: 10.1089/thy.2019.0514
pubmed: 32216548
pmcid: 7869871
Knauf JA, Luckett KA, Chen KY, Voza F, Socci ND, Ghossein R, Fagin JA. Hgf/Met activation mediates resistance to BRAF inhibition in murine anaplastic thyroid cancers. J Clin Invest. 2018;128(9):4086–97. https://doi.org/10.1172/JCI120966 .
doi: 10.1172/JCI120966
pubmed: 29990309
pmcid: 6118575
Waguespack SG, Drilon A, Lin JJ, Brose MS, McDermott R, Almubarak M, Bauman J, Casanova M, Krishnamurthy A, Kummar S, Leyvraz S, Oh DY, Park K, Sohal D, Sherman E, Norenberg R, Silvertown JD, Brega N, Hong DS, Cabanillas ME. Efficacy and safety of larotrectinib in patients with TRK fusion-positive thyroid carcinoma. Eur J Endocrinol. 2022;186(6):631–43. https://doi.org/10.1530/EJE-21-1259 .
doi: 10.1530/EJE-21-1259
pubmed: 35333737
pmcid: 9066591
Laetsch TW, DuBois SG, Mascarenhas L, Turpin B, Federman N, Albert CM, Nagasubramanian R, Davis JL, Rudzinski E, Feraco AM, Tuch BB, Ebata KT, Reynolds M, Smith S, Cruickshank S, Cox MC, Pappo AS, Hawkins DS. Larotrectinib for paediatric solid tumours harbouring NTRK gene fusions: phase 1 results from a multicentre, open-label, phase 1/2 study. Lancet Oncol. 2018;19(5):705–714. doi: 10.1016/S1470-2045(18)30119-0. Epub 2018 Mar 29. Erratum in: Lancet Oncol. 2018;19(5):e229.
Dias-Santagata D, Lennerz JK, Sadow PM, Frazier RP, Govinda Raju S, Henry D, Chung T, Kherani J, Rothenberg SM, Wirth LJ. Response to RET-Specific therapy in RET Fusion-Positive anaplastic thyroid carcinoma. Thyroid. 2020;30(9):1384–9. https://doi.org/10.1089/thy.2019.0477 .
doi: 10.1089/thy.2019.0477
pubmed: 32292131
pmcid: 7482117
Godbert Y, Henriques de Figueiredo B, Bonichon F, Chibon F, Hostein I, Pérot G, Dupin C, Daubech A, Belleannée G, Gros A, Italiano A, Soubeyran I. Remarkable response to Crizotinib in Woman with anaplastic lymphoma kinase-rearranged anaplastic thyroid carcinoma. J Clin Oncol. 2015;33(20):e84–7. https://doi.org/10.1200/JCO.2013.49.6596 .
doi: 10.1200/JCO.2013.49.6596
pubmed: 24687827
Lim SM, Chang H, Yoon MJ, Hong YK, Kim H, Chung WY, Park CS, Nam KH, Kang SW, Kim MK, et al. A multicenter, phase II trial of everolimus in locally advanced or metastatic thyroid cancer of all histologic subtypes. Ann Oncol. 2013;24:3089–94. https://doi.org/10.1093/annonc/mdt379 .
doi: 10.1093/annonc/mdt379
pubmed: 24050953
Schneider TC, de Wit D, Links TP, van Erp NP, van der Hoeven JJM, Gelderblom H, Roozen ICFM, Bos M, Corver WE, van Wezel T, et al. Everolimus in patients with Advanced Follicular-Derived thyroid Cancer: results of a phase II clinical trial. J Clin Endocrinol Metab. 2017;102:698–707. https://doi.org/10.1210/jc.2016-2525 .
doi: 10.1210/jc.2016-2525
pubmed: 27870581
Hanna GJ, Busaidy NL, Chau NG, Wirth LJ, Barletta JA, Calles A, Haddad RI, Kraft S, Cabanillas ME, Rabinowits G, O’Neill A, Limaye SA, Alexander EK, Moore FD Jr, Misiwkeiwicz K, Thomas T, Nehs M, Marqusee E, Lee SL, Jänne PA, Lorch JH. Genomic correlates of response to Everolimus in Aggressive Radioiodine-refractory thyroid Cancer: a phase II study. Clin Cancer Res. 2018;24(7):1546–53. https://doi.org/10.1158/1078-0432.CCR-17-2297 .
doi: 10.1158/1078-0432.CCR-17-2297
pubmed: 29301825
Wagle N, Grabiner BC, Van Allen EM, Amin-Mansour A, Taylor-Weiner A, Rosenberg M, Gray N, Barletta JA, Guo Y, Swanson SJ, Ruan DT, Hanna GJ, Haddad RI, Getz G, Kwiatkowski DJ, Carter SL, Sabatini DM, Jänne PA, Garraway LA, Lorch JH. Response and acquired resistance to everolimus in anaplastic thyroid cancer. N Engl J Med. 2014;371(15):1426–33. https://doi.org/10.1056/NEJMoa1403352 .
doi: 10.1056/NEJMoa1403352
pubmed: 25295501
pmcid: 4564868
Huang D, Zhang J, Zheng X, Gao M. Efficacy and safety of lenvatinib in anaplastic thyroid carcinoma: a meta-analysis. Front Endocrinol (Lausanne). 2022;13:920857. https://doi.org/10.3389/fendo.2022.920857 .
doi: 10.3389/fendo.2022.920857
pubmed: 35846304
Wirth LJ, Brose MS, Sherman EJ, Licitra L, Schlumberger M, Sherman SI, Bible KC, Robinson B, Rodien P, Godbert Y, De La Fouchardiere C, Newbold K, Nutting C, Misir S, Xie R, Almonte A, Ye W, Cabanillas ME. Open-label, single-arm, multicenter, phase II trial of lenvatinib for the treatment of patients with anaplastic thyroid cancer. J Clin Oncol. 2021;39(21):2359–66. https://doi.org/10.1200/JCO.20.03093 .
doi: 10.1200/JCO.20.03093
pubmed: 33961488
pmcid: 8280094
Higashiyama T, Sugino K, Hara H, Ito KI, Nakashima N, Onoda N, Tori M, Katoh H, Kiyota N, Ota I, Suganuma N, Hibi Y, Nemoto T, Takahashi S, Yane K, Ioji T, Kojima S, Kaneda H, Sugitani I, Tahara M. Phase II study of the efficacy and safety of lenvatinib for anaplastic thyroid cancer (HOPE). Eur J Cancer. 2022;173:210–8. https://doi.org/10.1016/j.ejca.2022.06.044 .
doi: 10.1016/j.ejca.2022.06.044
pubmed: 35932627
Savvides P, Nagaiah G, Lavertu P, Fu P, Wright JJ, Chapman R, Wasman J, Dowlati A, Remick SC. Phase II trial of sorafenib in patients with advanced anaplastic carcinoma of the thyroid. Thyroid. 2013;23:600–4. https://doi.org/10.1089/thy.2012.0103 .
doi: 10.1089/thy.2012.0103
pubmed: 23113752
pmcid: 3643255
Ha HT, Lee JS, Urba S, Koenig RJ, Sisson J, Giordano T, Worden FP. A phase II study of imatinib in patients with advanced anaplastic thyroid cancer. Thyroid. 2010;20:975–80. https://doi.org/10.1089/thy.2010.0057 .
doi: 10.1089/thy.2010.0057
pubmed: 20718683
Pennell NA, Daniels GH, Haddad RI, Ross DS, Evans T, Wirth LJ, Fidias PH, Temel JS, Gurubhagavatula S, Heist RS, et al. A phase II study of gefitinib in patients with advanced thyroid cancer. Thyroid. 2008;18:317–23.
doi: 10.1089/thy.2007.0120
pubmed: 17985985
Bible KC, Suman VJ, Menefee ME, Smallridge RC, Molina JR, Maples WJ, Karlin NJ, Traynor AM, Kumar P, Goh BC, Lim WT, Bossou AR, Isham CR, Webster KP, Kukla AK, Bieber C, Burton JK, Harris P, Erlichman C. Mayo Phase 2 Consortium; Mayo Clinic Endocrine Malignances Disease oriented Group. A multiinstitutional phase 2 trial of pazopanib monotherapy in advanced anaplastic thyroid cancer. J Clin Endocrinol Metab. 2012;97(9):3179–84. https://doi.org/10.1210/jc.2012-1520 .
doi: 10.1210/jc.2012-1520
pubmed: 22774206
pmcid: 3431569
Gunda V, Gigliotti B, Ashry T, Ndishabandi D, McCarthy M, Zhou Z, Amin S, Lee KE, Stork T, Wirth L, et al. Anti-PD-1/PD-L1 therapy augments lenvatinib’s efficacy by favorably altering the immune microenvironment of murine anaplastic thyroid cancer. Int J Cancer. 2019;144:2266–78. https://doi.org/10.1002/ijc.32041 .
doi: 10.1002/ijc.32041
pubmed: 30515783
Di Desidero T, Orlandi P, Gentile D, Banchi M, Alì G, Kusmic C, Armanetti P, Cayme GJ, Menichetti L, Fontanini G, Francia G, Bocci G. Pharmacological effects of vinorelbine in combination with lenvatinib in anaplastic thyroid cancer. Pharmacol Res. 2020;158:104920. https://doi.org/10.1016/j.phrs.2020.104920 .
doi: 10.1016/j.phrs.2020.104920
pubmed: 32461187
pmcid: 8011355
Jing C, Gao Z, Wang R, Yang Z, Shi B, Hou P. Lenvatinib enhances the antitumor effects of paclitaxel in anaplastic thyroid cancer. Am J Cancer Res. 2017;7(4):903–12.
pubmed: 28469962
pmcid: 5411797
Haigh PI, Ituarte PH, Wu HS, Treseler PA, Posner MD, Quivey JM, Duh QY, Clark OH. Completely resected anaplastic thyroid carcinoma combined with adjuvant chemotherapy and irradiation is associated with prolonged survival. Cancer. 2001;91(12):2335–42.
doi: 10.1002/1097-0142(20010615)91:12<2335::AID-CNCR1266>3.0.CO;2-1
pubmed: 11413523
Pierie JP, Muzikansky A, Gaz RD, Faquin WC, Ott MJ. The effect of surgery and radiotherapy on outcome of anaplastic thyroid carcinoma. Ann Surg Oncol. 2002;9(1):57–64. https://doi.org/10.1245/aso.2002.9.1.57 .
doi: 10.1245/aso.2002.9.1.57
pubmed: 11833496
Swaak-Kragten AT, de Wilt JH, Schmitz PI, Bontenbal M, Levendag PC. Multimodality treatment for anaplastic thyroid carcinoma–treatment outcome in 75 patients. Radiother Oncol. 2009;92(1):100–4. https://doi.org/10.1016/j.radonc.2009.02.016 .
doi: 10.1016/j.radonc.2009.02.016
pubmed: 19328572
Wang JR, Zafereo ME, Dadu R, Ferrarotto R, Busaidy NL, Lu C, Ahmed S, Gule-Monroe MK, Williams MD, Sturgis EM, Goepfert RP, Gross ND, Lai SY, Gunn GB, Phan J, Rosenthal DI, Fuller CD, Morrison WH, Iyer P, Cabanillas ME. Complete surgical resection following neoadjuvant dabrafenib plus trametinib in BRAFV600E-mutated anaplastic thyroid carcinoma. Thyroid. 2019;29(8):1036–43. https://doi.org/10.1089/thy.2019.0133 .
doi: 10.1089/thy.2019.0133
pubmed: 31319771
pmcid: 6707029
Smulever A, Barrio Lower Daniele S, Damiano G, Pitoia F. Re: complete surgical resection following neoadjuvant dabrafenib plus trametinib in BRAFV600E-mutated anaplastic thyroid carcinoma by Wang. Thyroid. 2020;30(8):1224–25. https://doi.org/10.1089/thy.2020.0251 .
doi: 10.1089/thy.2020.0251
pubmed: 32397830
Pitoia F, Scheffel RS, Califano I, Gauna A, Tala H, Vaisman F, Gonzalez AR, Hoff AO, Maia AL. Management of radioiodine refractory differentiated thyroid cancer: the latin american perspective. Rev Endocr Metab Disord. 2023;29. https://doi.org/10.1007/s11154-023-09818-0 .
Damásio I, Simões-Pereira J, Donato S, Horta M, Cavaco BM, Rito M, Gomes P, Leite V. Entrectinib in the neoadjuvant setting of anaplastic thyroid cancer: a case report. Eur Thyroid J. 2022;12(1):e220179. https://doi.org/10.1530/ETJ-22-0179 .
doi: 10.1530/ETJ-22-0179
pubmed: 36378538
pmcid: 9874958
Boudin L, Morvan JB, Thariat J, Métivier D, Marcy PY, Delarbre D. Rationale efficacy and safety evidence of Lenvatinib and Pembrolizumab Association in anaplastic thyroid carcinoma. Curr Oncol. 2022;29(10):7718–31. https://doi.org/10.3390/curroncol29100610 .
doi: 10.3390/curroncol29100610
pubmed: 36290887
pmcid: 9601195
Dierks C, Seufert J, Ruf J, et al. 1915P the lenvatinib/pembrolizumab combination induces long lasting and complete responses in patients with metastatic anaplastic or poorly differentiated thyroid carcinoma: results from a retrospective study and first results from the prospective phase II ATLEP trial. Ann Oncol. 2020;31:1085.
doi: 10.1016/j.annonc.2020.08.1403
Capdevila J, Wirth LJ, Ernst T, Ponce Aix S, Lin CC, Ramlau R, Butler MO, Delord JP, Gelderblom H, Ascierto PA, Fasolo A, Führer D, Hütter-Krönke ML, Forde PM, Wrona A, Santoro A, Sadow PM, Szpakowski S, Wu H, Bostel G, Faris J, Cameron S, Varga A, Taylor M. PD-1 blockade in anaplastic thyroid carcinoma. J Clin Oncol. 2020;38(23):2620–7. https://doi.org/10.1200/JCO.19.02727 .
doi: 10.1200/JCO.19.02727
pubmed: 32364844
pmcid: 7476256
Lorch JH, Barletta JA, Nehs M, et al. A phase II study of nivolumab (N) plus ipilimumab (I) in radioidine refractory differentiated thyroid cancer (RAIR DTC) with exploratory cohorts in anaplastic (ATC) and medullary thyroid cancer (MTC). J Clin Oncol. 2020;38:6513.
doi: 10.1200/JCO.2020.38.15_suppl.6513
Cabanillas ME, Dadu R, Ferrarotto R, et al. Atezolizumab combinations with targeted therapy for anaplastic thyroid carcinoma (ATC). J Clin Oncol. 2020;38:6514.
doi: 10.1200/JCO.2020.38.15_suppl.6514
FDA grants accelerated approval to pembrolizumab for first tissue/site agnostic indication., May 2017. Available at https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-pembrolizumab-first-tissuesite-agnostic-indication . Accessed July 3, 2023.
Hatashima A, Archambeau B, Armbruster H, Xu M, Shah M, Konda B, Lott Limbach A, Sukrithan V. An evaluation of clinical efficacy of Immune Checkpoint inhibitors for patients with anaplastic thyroid carcinoma. Thyroid. 2022;32(8):926–36. https://doi.org/10.1089/thy.2022.0073 .
doi: 10.1089/thy.2022.0073
pubmed: 35583228
Dierks C, Ruf J, Seufert J, Kreissl M, Klein C, Spitzweg C, Kroiss M, Thomusch O, Lorenz K, Zielke A, Miething C. 1646MO phase II ATLEP trial: final results for lenvatinib/pembrolizumab in metastasized anaplastic and poorly differentiated thyroid carcinoma. Ann Oncol. 2022;33:1295.
doi: 10.1016/j.annonc.2022.07.1726
Lorch JH, Barletta JA, Nehs M, Uppaluri R, Alexander EK, Haddad RI, Hanna GJ, Margalit DN, Tishler RB, Schoenfeld JD, Goguen LA, Jabiev A, Sorensen MJ, Ahmadi S, Marqusee E, Kim MI, Stanizzi D, Harris E, Kacew A, Barbie DA. A phase II study of nivolumab (N) plus ipilimumab (I) in radioidine refractory differentiated thyroid cancer (RAIR DTC) with exploratory cohorts in anaplastic (ATC) and medullary thyroid cancer (MTC). J Clin Oncol 2020 38:15_suppl, 6513–3.
Roche AM, Fedewa SA, Shi LL, Chen AY, Ansley M. Treatment and survival vary by race/ethnicity in patients with anaplastic thyroid cancer. Cancer. 2018;124(8):1780–90. https://doi.org/10.1002/cncr.31252 .
doi: 10.1002/cncr.31252
pubmed: 29409119
dos-Santos-Silva I, Gupta S, Orem J, Shulman LN. Global disparities in access to cancer care. Commun Med. 2022;2:31. https://doi.org/10.1038/s43856-022-00097-5 .
doi: 10.1038/s43856-022-00097-5
pubmed: 35603309
pmcid: 9053243