The relationship between klotho, testosterone, and sexual health parameters among US adult men.

Hormone Klotho Testosterone

Journal

Journal of endocrinological investigation
ISSN: 1720-8386
Titre abrégé: J Endocrinol Invest
Pays: Italy
ID NLM: 7806594

Informations de publication

Date de publication:
30 Aug 2023
Historique:
received: 06 11 2022
accepted: 24 07 2023
medline: 31 8 2023
pubmed: 31 8 2023
entrez: 30 8 2023
Statut: aheadofprint

Résumé

Klotho is a pleotropic hormone involved in a multitude of biological processes necessary for healthy aging, and affords protection from adverse events such as cardiovascular disease, inflammation, and various cancers. Emerging evidence suggests that klotho is also an important component of biochemical pathways that regulate hormone balance, which may include those pathways governing testosterone production and men's sexual health, though data are limited and results are mixed. Using a cohort of 767 men from the NHANES 2015-2016 survey cycle, we set out to quantify the association between serum klotho levels and serum testosterone levels, as well as clinical markers of men's sexual health (e.g., testosterone:estrogen ratio, bioavailable testosterone, and free testosterone). Multivariable linear and logistic regression models while controlling for potential confounders were constructed to quantify the relationship between serum klotho and testosterone, as well as between serum klotho and odds of low testosterone (serum testosterone < 300 ng/dL). A positive association was observed between serum klotho and testosterone (β = 0.18, p = 0.04). Serum klotho levels were also stratified into quartiles, and we observed statistically significant increases in testosterone for increasing quartile level of klotho using the first quartile as the reference group (β = 90.51, p = 0.001, β = 106.93, p = 0.002, β = 95.33, p = 0.03 for quartiles 2, 3, and 4, respectively). The average testosterone values by quartiles of klotho were 306.9 ng/dL, 390 ng/dL, 409.3 ng/dL, and 436.6 ng/dL, respectively. We modeled important proxies for sexual health including bioavailable and free testosterone, the testosterone:estradiol ratio, and C-reactive protein. Men in the second quartile of klotho had a significantly lower odds of an abnormal testosterone:estradiol ratio compared to the first quartile [OR = 0.18, 95% CI = (0.03, 0.98)].We observed null associations between continuous serum klotho and odds of low testosterone [OR = 1.0, 95% CI = (1.0, 1.0)], and when stratified by quartile, we observed a significant decrease in the odds of low testosterone for individuals in the second quartile of klotho compared to the first quartile [OR = 0.21, 95% CI = (0.05, 0.91)]. In addition, C-reactive protein was inversely associated with testosterone in men (β = - 4.65, p = 0.001), and inversely associated with quartiles of klotho (β = - 2.28, p = 0.04, β = - 2.22, p = 0.04, β = - 2.28, p = 0.03, for quartiles 2, 3, and 4, respectively). Our findings support previous studies suggesting a role for klotho in testosterone levels and sexual function among men. Future studies are warranted to corroborate these findings, determine clinical significance, and elucidate potential mechanisms underlying these associations.

Sections du résumé

BACKGROUND BACKGROUND
Klotho is a pleotropic hormone involved in a multitude of biological processes necessary for healthy aging, and affords protection from adverse events such as cardiovascular disease, inflammation, and various cancers. Emerging evidence suggests that klotho is also an important component of biochemical pathways that regulate hormone balance, which may include those pathways governing testosterone production and men's sexual health, though data are limited and results are mixed.
OBJECTIVE OBJECTIVE
Using a cohort of 767 men from the NHANES 2015-2016 survey cycle, we set out to quantify the association between serum klotho levels and serum testosterone levels, as well as clinical markers of men's sexual health (e.g., testosterone:estrogen ratio, bioavailable testosterone, and free testosterone).
METHODS METHODS
Multivariable linear and logistic regression models while controlling for potential confounders were constructed to quantify the relationship between serum klotho and testosterone, as well as between serum klotho and odds of low testosterone (serum testosterone < 300 ng/dL).
RESULTS RESULTS
A positive association was observed between serum klotho and testosterone (β = 0.18, p = 0.04). Serum klotho levels were also stratified into quartiles, and we observed statistically significant increases in testosterone for increasing quartile level of klotho using the first quartile as the reference group (β = 90.51, p = 0.001, β = 106.93, p = 0.002, β = 95.33, p = 0.03 for quartiles 2, 3, and 4, respectively). The average testosterone values by quartiles of klotho were 306.9 ng/dL, 390 ng/dL, 409.3 ng/dL, and 436.6 ng/dL, respectively. We modeled important proxies for sexual health including bioavailable and free testosterone, the testosterone:estradiol ratio, and C-reactive protein. Men in the second quartile of klotho had a significantly lower odds of an abnormal testosterone:estradiol ratio compared to the first quartile [OR = 0.18, 95% CI = (0.03, 0.98)].We observed null associations between continuous serum klotho and odds of low testosterone [OR = 1.0, 95% CI = (1.0, 1.0)], and when stratified by quartile, we observed a significant decrease in the odds of low testosterone for individuals in the second quartile of klotho compared to the first quartile [OR = 0.21, 95% CI = (0.05, 0.91)]. In addition, C-reactive protein was inversely associated with testosterone in men (β = - 4.65, p = 0.001), and inversely associated with quartiles of klotho (β = - 2.28, p = 0.04, β = - 2.22, p = 0.04, β = - 2.28, p = 0.03, for quartiles 2, 3, and 4, respectively).
CONCLUSION CONCLUSIONS
Our findings support previous studies suggesting a role for klotho in testosterone levels and sexual function among men. Future studies are warranted to corroborate these findings, determine clinical significance, and elucidate potential mechanisms underlying these associations.

Identifiants

pubmed: 37648906
doi: 10.1007/s40618-023-02163-8
pii: 10.1007/s40618-023-02163-8
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2023. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.

Références

Köhn FM (2006) Testosterone and body functions. Aging Male 9(4):183–188. https://doi.org/10.1080/13685530601060396 . (Epub 2006/12/21. PubMed PMID: 17178552)
doi: 10.1080/13685530601060396 pubmed: 17178552
Shea JL, Wong PY, Chen Y (2014) Free testosterone: clinical utility and important analytical aspects of measurement. Adv Clin Chem 63:59–84. https://doi.org/10.1016/b978-0-12-800094-6.00002-9 . (Epub 2014/05/03. PubMed PMID: 24783351)
doi: 10.1016/b978-0-12-800094-6.00002-9 pubmed: 24783351
Abhyankar N, Shoshany O, Niederberger C (2016) Testosterone to estradiol ratio correlates with sperm concentration improvement in hypogonadal oligozoosermic patients treated with anastrozole. Fertil Steril 106(3):e239–e240. https://doi.org/10.1016/j.fertnstert.2016.07.690
doi: 10.1016/j.fertnstert.2016.07.690
Kusters CD, Paul KC, Lu AT, Ferruci L, Ritz BR, Binder AM, Horvath S (2023) Higher testosterone and testosterone/estradiol ratio in men are associated with better epigenetic estimators of mortality risk. medRxiv. https://doi.org/10.1101/2023.02.16.23285997
doi: 10.1101/2023.02.16.23285997 pubmed: 36865294 pmcid: 9980235
Belladelli F, Del Giudice F, Kasman A, Salonia A, Eisenberg ML (2021) The association between testosterone, estradiol and their ratio and mortality among US men. Andrologia 53(4):e13993. https://doi.org/10.1111/and.13993
doi: 10.1111/and.13993 pubmed: 33666951
Schulster M, Bernie AM, Ramasamy R (2016) The role of estradiol in male reproductive function. Asian J Androl 18(3):435–440. https://doi.org/10.4103/1008-682x.173932 . (Epub 2016/02/26. PubMed PMID: 26908066; PMCID: PMC4854098)
doi: 10.4103/1008-682x.173932 pubmed: 26908066 pmcid: 4854098
Jia H, Sullivan CT, McCoy SC, Yarrow JF, Morrow M, Borst SE (2015) Review of health risks of low testosterone and testosterone administration. World J Clin Cases 3(4):338–344. https://doi.org/10.12998/wjcc.v3.i4.338 . (PubMed PMID: 25879005)
doi: 10.12998/wjcc.v3.i4.338 pubmed: 25879005 pmcid: 4391003
Ross A, Bhasin S (2016) Hypogonadism: its prevalence and diagnosis. Urol Clin North Am 43(2):163–176. https://doi.org/10.1016/j.ucl.2016.01.002 . (Epub 2016/05/03. PubMed PMID: 27132573)
doi: 10.1016/j.ucl.2016.01.002 pubmed: 27132573
Glover FE, Caudle WM, Del Giudice F, Belladelli F, Mulloy E, Lawal E, Eisenberg ML (2022) The association between caffeine intake and testosterone: NHANES 2013–2014. Nutr J 21(1):33. https://doi.org/10.1186/s12937-022-00783-z
doi: 10.1186/s12937-022-00783-z pubmed: 35578259 pmcid: 9112543
Glover FE, Del Giudice F, Belladelli F, Ryan PB, Chen T, Eisenberg ML, Caudle WM (2021) The association between 2,4-D and serum testosterone levels: NHANES 2013–2014. J Endocrinol Invest. https://doi.org/10.1007/s40618-021-01709-y
doi: 10.1007/s40618-021-01709-y pubmed: 34837643
Holt SK, Lopushnyan N, Hotaling J, Sarma AV, Dunn RL, Cleary PA, Braffett BH, Gatcomb P, Martin C, Herman WH, Wessells H (2014) Prevalence of low testosterone and predisposing risk factors in men with type 1 diabetes mellitus: findings from the DCCT/EDIC. J Clin Endocrinol Metab 99(9):E1655–E1660. https://doi.org/10.1210/jc.2014-1317 . (Epub 2014/07/12. PubMed PMID: 25013994; PMCID: PMC4154094)
doi: 10.1210/jc.2014-1317 pubmed: 25013994 pmcid: 4154094
Del Giudice F, Glover F, Belladelli F, De Berardinis E, Sciarra A, Salciccia S, Kasman AM, Chen T, Eisenberg ML (2021) Association of daily step count and serum testosterone among men in the United States. Endocrine 72(3):874–881. https://doi.org/10.1007/s12020-021-02631-2
doi: 10.1007/s12020-021-02631-2 pubmed: 33580402 pmcid: 8159788
John GB, Cheng CY, Kuro-o M (2011) Role of Klotho in aging, phosphate metabolism, and CKD. Am J Kidney Dis 58(1):127–134. https://doi.org/10.1053/j.ajkd.2010.12.027 . (Epub 2011/04/19. PubMed PMID: 21496980; PMCID: PMC3191324)
doi: 10.1053/j.ajkd.2010.12.027 pubmed: 21496980 pmcid: 3191324
Chen Y-Y, Chen W-L (2022) The relationship between polycyclic aromatic hydrocarbons exposure and serum klotho among adult population. BMC Geriatr 22(1):198. https://doi.org/10.1186/s12877-022-02924-9
doi: 10.1186/s12877-022-02924-9 pubmed: 35287592 pmcid: 8919518
Mostafidi E, Moeen A, Nasri H, Ghorbani Hagjo A, Ardalan M (2016) Serum klotho levels in trained athletes. Nephrourol Mon. 8(1):e30245. https://doi.org/10.5812/numonthly.30245 . (PubMed PMID: 26981496)
doi: 10.5812/numonthly.30245 pubmed: 26981496 pmcid: 4780197
Kuwahara N, Sasaki S, Kobara M, Nakata T, Tatsumi T, Irie H, Narumiya H, Hatta T, Takeda K, Matsubara H, Hushiki S (2008) HMG-CoA reductase inhibition improves anti-aging klotho protein expression and arteriosclerosis in rats with chronic inhibition of nitric oxide synthesis. Int J Cardiol 123(2):84–90. https://doi.org/10.1016/j.ijcard.2007.02.029 . (Epub 2007/04/17. PubMed PMID: 17434618)
doi: 10.1016/j.ijcard.2007.02.029 pubmed: 17434618
Lim K, Groen A, Molostvov G, Lu T, Lilley KS, Snead D, James S, Wilkinson IB, Ting S, Hsiao L-L, Hiemstra TF, Zehnder D (2015) α-klotho expression in human tissues. J Clin Endocrinol Metab 100(10):E1308–E1318. https://doi.org/10.1210/jc.2015-1800 . (Epub 2015/08/17. PubMed PMID: 26280509)
doi: 10.1210/jc.2015-1800 pubmed: 26280509 pmcid: 4596032
Hsu SC, Huang SM, Lin SH, Ka SM, Chen A, Shih MF, Hsu YJ (2014) Testosterone increases renal anti-aging klotho gene expression via the androgen receptor-mediated pathway. Biochem J 464(2):221–229. https://doi.org/10.1042/bj20140739 . (Epub 2014/08/28. PubMed PMID: 25163025)
doi: 10.1042/bj20140739 pubmed: 25163025
Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T, Ohyama Y, Kurabayashi M, Kaname T, Kume E, Iwasaki H, Iida A, Shiraki-Iida T, Nishikawa S, Nagai R, Nabeshima YI (1997) Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390(6655):45–51. https://doi.org/10.1038/36285 . (Epub 1997/11/18. PubMed PMID: 9363890)
doi: 10.1038/36285 pubmed: 9363890
Dote-Montero M, Amaro-Gahete FJ, De-la OA, Jurado-Fasoli L, Gutierrez A, Castillo MJ (2019) Study of the association of DHEAS, testosterone and cortisol with S-klotho plasma levels in healthy sedentary middle-aged adults. Exp Gerontol 121:55–61. https://doi.org/10.1016/j.exger.2019.03.010 . (Epub 2019/04/01. PubMed PMID: 30928678)
doi: 10.1016/j.exger.2019.03.010 pubmed: 30928678
Ekström L, Knutsson JE, Stephanou C, Hirschberg AL (2022) Klotho polymorphism in association with serum testosterone and knee strength in women after testosterone administration. Front Physiol. https://doi.org/10.3389/fphys.2022.844133
doi: 10.3389/fphys.2022.844133 pubmed: 35600302 pmcid: 9116293
Zhang Z, Qiu S, Huang X, Jin K, Zhou X, Lin T, Zou X, Yang Q, Yang L, Wei Q (2022) Association between testosterone and serum soluble α-klotho in US males: a cross-sectional study. BMC Geriatr 22(1):570. https://doi.org/10.1186/s12877-022-03265-3 . (Epub 2022/07/13. PubMed PMID: 35820842; PMCID: PMC9275159)
doi: 10.1186/s12877-022-03265-3 pubmed: 35820842 pmcid: 9275159
Prevention CfDCa. NHANES survey methods and analytic guidelines 2020. https://wwwn.cdc.gov/nchs/nhanes/analyticguidelines.aspx . Cited 26 Oct 2020
Prevention CfDCa. NHANES 2013–2014 Questionnaire Data Overview 2020. https://wwwn.cdc.gov/nchs/nhanes/ContinuousNhanes/OverviewQuex.aspx?BeginYear=2013 . Updated 24 Aug 2020
Patrick ME, Azar B (2018) High-intensity drinking. Alcohol Res 39(1):49–55 (Epub 2018/12/18. PubMed PMID: 30557148; PMCID: PMC6104968 interests)
pubmed: 30557148 pmcid: 6104968
Abel EL, Kruger ML, Friedl J (1998) How do physicians define “light,” “moderate,” and “heavy” drinking? Alcohol Clin Exp Res 22(5):979–984. https://doi.org/10.1111/j.1530-0277.1998.tb03692.x . (Epub 1998/09/03. PubMed PMID: 9726266)
doi: 10.1111/j.1530-0277.1998.tb03692.x pubmed: 9726266
Textor J, van der Zander B, Gilthorpe MS, Liśkiewicz M, Ellison GTH (2016) Robust causal inference using directed acyclic graphs: the R package ‘dagitty.’ Int J Epidemiol 45(6):1887–1894. https://doi.org/10.1093/ije/dyw341
doi: 10.1093/ije/dyw341 pubmed: 28089956
Rivas AM, Mulkey Z, Lado-Abeal J, Yarbrough S (2014) Diagnosing and managing low serum testosterone. Proc (Bayl Univ Med Cent). 27(4):321–324. https://doi.org/10.1080/08998280.2014.11929145 . (Epub 2014/12/09. PubMed PMID: 25484498; PMCID: PMC4255853)
doi: 10.1080/08998280.2014.11929145 pubmed: 25484498 pmcid: 4255853
Zhu A, Andino J, Daignault-Newton S, Chopra Z, Sarma A, Dupree JM (2022) What is a normal testosterone level for young men? Rethinking the 300 ng/dL cutoff for testosterone deficiency in men 20–44 years old. J Urol 208(6):1295–1302. https://doi.org/10.1097/ju.0000000000002928 . (Epub 2022/10/26. PubMed PMID: 36282060)
doi: 10.1097/ju.0000000000002928 pubmed: 36282060
Kapoor D, Clarke S, Stanworth R, Channer KS, Jones TH (2007) The effect of testosterone replacement therapy on adipocytokines and C-reactive protein in hypogonadal men with type 2 diabetes. Eur J Endocrinol 156(5):595–602. https://doi.org/10.1530/EJE-06-0737
doi: 10.1530/EJE-06-0737 pubmed: 17468196
Di Bona D, Accardi G, Virruso C, Candore G, Caruso C (2014) Association of klotho polymorphisms with healthy aging: a systematic review and meta-analysis. Rejuvenation Res 17(2):212–216. https://doi.org/10.1089/rej.2013.1523 . (Epub 2013/10/30. PubMed PMID: 24164579)
doi: 10.1089/rej.2013.1523 pubmed: 24164579
Matsumura Y, Aizawa H, Shiraki-Iida T, Nagai R, Kuro-o M, Nabeshima Y (1998) Identification of the human klotho gene and its two transcripts encoding membrane and secreted klotho protein. Biochem Biophys Res Commun 242(3):626–630. https://doi.org/10.1006/bbrc.1997.8019 . (Epub 1998/02/17. PubMed PMID: 9464267)
doi: 10.1006/bbrc.1997.8019 pubmed: 9464267
Rakugi H, Matsukawa N, Ishikawa K, Yang J, Imai M, Ikushima M, Maekawa Y, Kida I, Miyazaki J, Ogihara T (2007) Anti-oxidative effect of klotho on endothelial cells through cAMP activation. Endocrine 31(1):82–87. https://doi.org/10.1007/s12020-007-0016-9 . (Epub 2007/08/22. PubMed PMID: 17709902)
doi: 10.1007/s12020-007-0016-9 pubmed: 17709902
Dote-Montero M, De-la OA, Castillo MJ, Amaro-Gahete FJ (2020) Predictors of sexual desire and sexual function in sedentary middle-aged adults: the role of lean mass index and S-klotho plasma levels. The FIT-AGEING study. J Sex Med 17(4):665–677. https://doi.org/10.1016/j.jsxm.2020.01.016 . (Epub 2020/02/25. PubMed PMID: 32089483)
doi: 10.1016/j.jsxm.2020.01.016 pubmed: 32089483
Drüeke TB, Massy ZA (2013) Circulating klotho levels: clinical relevance and relationship with tissue klotho expression. Kidney Int 83(1):13–15. https://doi.org/10.1038/ki.2012.370
doi: 10.1038/ki.2012.370 pubmed: 23271484
Bøllehuus Hansen L, Kaludjerovic J, Nielsen JE, Rehfeld A, Poulsen NN, Ide N, Skakkebaek NE, Frederiksen H, Juul A, Lanske B, Blomberg JM (2020) Influence of FGF23 and Klotho on male reproduction: systemic vs direct effects. FASEB J 34(9):12436–12449. https://doi.org/10.1096/fj.202000061RR
doi: 10.1096/fj.202000061RR pubmed: 32729975
Muraleedharan V, Jones TH (2010) Testosterone and the metabolic syndrome. Ther Adv Endocrinol Metab. 1(5):207–223. https://doi.org/10.1177/2042018810390258 . (Epub 2010/10/01. PubMed PMID: 23148165; PMCID: PMC3474619)
doi: 10.1177/2042018810390258 pubmed: 23148165 pmcid: 3474619
Zhang C, Bian H, Chen Z, Tian B, Wang H, Tu X, Cai B, Jin K, Zheng X, Yang L, Qiu S (2021) The association between dietary inflammatory index and sex hormones among men in the United States. J Urol 206(1):97–103. https://doi.org/10.1097/JU.0000000000001703
doi: 10.1097/JU.0000000000001703 pubmed: 33881929
Jin M, Lou J, Yu H, Miao M, Wang G, Ai H, Huang Y, Han S, Han D, Yu G (2018) Exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin promotes inflammation in mouse testes: the critical role of klotho in sertoli cells. Toxicol Lett 295:134–143. https://doi.org/10.1016/j.toxlet.2018.06.001 . (Epub 2018/06/10. PubMed PMID: 29885354)
doi: 10.1016/j.toxlet.2018.06.001 pubmed: 29885354

Auteurs

F Glover (F)

Emory University School of Medicine, Atlanta, GA, 30322, USA. gloverfrank975@gmail.com.

E Sullivan (E)

Pharmacology Department, Emory University, Atlanta, GA, 30322, USA.

E Mulloy (E)

Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA.

F Belladelli (F)

Department of Maternal-Infant and Urological Sciences, "Sapienza" Rome University, Policlinico Umberto I Hospital, Rome, Italy.

F Del Giudice (F)

Department of Maternal-Infant and Urological Sciences, "Sapienza" Rome University, Policlinico Umberto I Hospital, Rome, Italy.

M L Eisenberg (ML)

Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA.

Classifications MeSH