The relationship between klotho, testosterone, and sexual health parameters among US adult men.
Hormone
Klotho
Testosterone
Journal
Journal of endocrinological investigation
ISSN: 1720-8386
Titre abrégé: J Endocrinol Invest
Pays: Italy
ID NLM: 7806594
Informations de publication
Date de publication:
30 Aug 2023
30 Aug 2023
Historique:
received:
06
11
2022
accepted:
24
07
2023
medline:
31
8
2023
pubmed:
31
8
2023
entrez:
30
8
2023
Statut:
aheadofprint
Résumé
Klotho is a pleotropic hormone involved in a multitude of biological processes necessary for healthy aging, and affords protection from adverse events such as cardiovascular disease, inflammation, and various cancers. Emerging evidence suggests that klotho is also an important component of biochemical pathways that regulate hormone balance, which may include those pathways governing testosterone production and men's sexual health, though data are limited and results are mixed. Using a cohort of 767 men from the NHANES 2015-2016 survey cycle, we set out to quantify the association between serum klotho levels and serum testosterone levels, as well as clinical markers of men's sexual health (e.g., testosterone:estrogen ratio, bioavailable testosterone, and free testosterone). Multivariable linear and logistic regression models while controlling for potential confounders were constructed to quantify the relationship between serum klotho and testosterone, as well as between serum klotho and odds of low testosterone (serum testosterone < 300 ng/dL). A positive association was observed between serum klotho and testosterone (β = 0.18, p = 0.04). Serum klotho levels were also stratified into quartiles, and we observed statistically significant increases in testosterone for increasing quartile level of klotho using the first quartile as the reference group (β = 90.51, p = 0.001, β = 106.93, p = 0.002, β = 95.33, p = 0.03 for quartiles 2, 3, and 4, respectively). The average testosterone values by quartiles of klotho were 306.9 ng/dL, 390 ng/dL, 409.3 ng/dL, and 436.6 ng/dL, respectively. We modeled important proxies for sexual health including bioavailable and free testosterone, the testosterone:estradiol ratio, and C-reactive protein. Men in the second quartile of klotho had a significantly lower odds of an abnormal testosterone:estradiol ratio compared to the first quartile [OR = 0.18, 95% CI = (0.03, 0.98)].We observed null associations between continuous serum klotho and odds of low testosterone [OR = 1.0, 95% CI = (1.0, 1.0)], and when stratified by quartile, we observed a significant decrease in the odds of low testosterone for individuals in the second quartile of klotho compared to the first quartile [OR = 0.21, 95% CI = (0.05, 0.91)]. In addition, C-reactive protein was inversely associated with testosterone in men (β = - 4.65, p = 0.001), and inversely associated with quartiles of klotho (β = - 2.28, p = 0.04, β = - 2.22, p = 0.04, β = - 2.28, p = 0.03, for quartiles 2, 3, and 4, respectively). Our findings support previous studies suggesting a role for klotho in testosterone levels and sexual function among men. Future studies are warranted to corroborate these findings, determine clinical significance, and elucidate potential mechanisms underlying these associations.
Sections du résumé
BACKGROUND
BACKGROUND
Klotho is a pleotropic hormone involved in a multitude of biological processes necessary for healthy aging, and affords protection from adverse events such as cardiovascular disease, inflammation, and various cancers. Emerging evidence suggests that klotho is also an important component of biochemical pathways that regulate hormone balance, which may include those pathways governing testosterone production and men's sexual health, though data are limited and results are mixed.
OBJECTIVE
OBJECTIVE
Using a cohort of 767 men from the NHANES 2015-2016 survey cycle, we set out to quantify the association between serum klotho levels and serum testosterone levels, as well as clinical markers of men's sexual health (e.g., testosterone:estrogen ratio, bioavailable testosterone, and free testosterone).
METHODS
METHODS
Multivariable linear and logistic regression models while controlling for potential confounders were constructed to quantify the relationship between serum klotho and testosterone, as well as between serum klotho and odds of low testosterone (serum testosterone < 300 ng/dL).
RESULTS
RESULTS
A positive association was observed between serum klotho and testosterone (β = 0.18, p = 0.04). Serum klotho levels were also stratified into quartiles, and we observed statistically significant increases in testosterone for increasing quartile level of klotho using the first quartile as the reference group (β = 90.51, p = 0.001, β = 106.93, p = 0.002, β = 95.33, p = 0.03 for quartiles 2, 3, and 4, respectively). The average testosterone values by quartiles of klotho were 306.9 ng/dL, 390 ng/dL, 409.3 ng/dL, and 436.6 ng/dL, respectively. We modeled important proxies for sexual health including bioavailable and free testosterone, the testosterone:estradiol ratio, and C-reactive protein. Men in the second quartile of klotho had a significantly lower odds of an abnormal testosterone:estradiol ratio compared to the first quartile [OR = 0.18, 95% CI = (0.03, 0.98)].We observed null associations between continuous serum klotho and odds of low testosterone [OR = 1.0, 95% CI = (1.0, 1.0)], and when stratified by quartile, we observed a significant decrease in the odds of low testosterone for individuals in the second quartile of klotho compared to the first quartile [OR = 0.21, 95% CI = (0.05, 0.91)]. In addition, C-reactive protein was inversely associated with testosterone in men (β = - 4.65, p = 0.001), and inversely associated with quartiles of klotho (β = - 2.28, p = 0.04, β = - 2.22, p = 0.04, β = - 2.28, p = 0.03, for quartiles 2, 3, and 4, respectively).
CONCLUSION
CONCLUSIONS
Our findings support previous studies suggesting a role for klotho in testosterone levels and sexual function among men. Future studies are warranted to corroborate these findings, determine clinical significance, and elucidate potential mechanisms underlying these associations.
Identifiants
pubmed: 37648906
doi: 10.1007/s40618-023-02163-8
pii: 10.1007/s40618-023-02163-8
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2023. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.
Références
Köhn FM (2006) Testosterone and body functions. Aging Male 9(4):183–188. https://doi.org/10.1080/13685530601060396 . (Epub 2006/12/21. PubMed PMID: 17178552)
doi: 10.1080/13685530601060396
pubmed: 17178552
Shea JL, Wong PY, Chen Y (2014) Free testosterone: clinical utility and important analytical aspects of measurement. Adv Clin Chem 63:59–84. https://doi.org/10.1016/b978-0-12-800094-6.00002-9 . (Epub 2014/05/03. PubMed PMID: 24783351)
doi: 10.1016/b978-0-12-800094-6.00002-9
pubmed: 24783351
Abhyankar N, Shoshany O, Niederberger C (2016) Testosterone to estradiol ratio correlates with sperm concentration improvement in hypogonadal oligozoosermic patients treated with anastrozole. Fertil Steril 106(3):e239–e240. https://doi.org/10.1016/j.fertnstert.2016.07.690
doi: 10.1016/j.fertnstert.2016.07.690
Kusters CD, Paul KC, Lu AT, Ferruci L, Ritz BR, Binder AM, Horvath S (2023) Higher testosterone and testosterone/estradiol ratio in men are associated with better epigenetic estimators of mortality risk. medRxiv. https://doi.org/10.1101/2023.02.16.23285997
doi: 10.1101/2023.02.16.23285997
pubmed: 36865294
pmcid: 9980235
Belladelli F, Del Giudice F, Kasman A, Salonia A, Eisenberg ML (2021) The association between testosterone, estradiol and their ratio and mortality among US men. Andrologia 53(4):e13993. https://doi.org/10.1111/and.13993
doi: 10.1111/and.13993
pubmed: 33666951
Schulster M, Bernie AM, Ramasamy R (2016) The role of estradiol in male reproductive function. Asian J Androl 18(3):435–440. https://doi.org/10.4103/1008-682x.173932 . (Epub 2016/02/26. PubMed PMID: 26908066; PMCID: PMC4854098)
doi: 10.4103/1008-682x.173932
pubmed: 26908066
pmcid: 4854098
Jia H, Sullivan CT, McCoy SC, Yarrow JF, Morrow M, Borst SE (2015) Review of health risks of low testosterone and testosterone administration. World J Clin Cases 3(4):338–344. https://doi.org/10.12998/wjcc.v3.i4.338 . (PubMed PMID: 25879005)
doi: 10.12998/wjcc.v3.i4.338
pubmed: 25879005
pmcid: 4391003
Ross A, Bhasin S (2016) Hypogonadism: its prevalence and diagnosis. Urol Clin North Am 43(2):163–176. https://doi.org/10.1016/j.ucl.2016.01.002 . (Epub 2016/05/03. PubMed PMID: 27132573)
doi: 10.1016/j.ucl.2016.01.002
pubmed: 27132573
Glover FE, Caudle WM, Del Giudice F, Belladelli F, Mulloy E, Lawal E, Eisenberg ML (2022) The association between caffeine intake and testosterone: NHANES 2013–2014. Nutr J 21(1):33. https://doi.org/10.1186/s12937-022-00783-z
doi: 10.1186/s12937-022-00783-z
pubmed: 35578259
pmcid: 9112543
Glover FE, Del Giudice F, Belladelli F, Ryan PB, Chen T, Eisenberg ML, Caudle WM (2021) The association between 2,4-D and serum testosterone levels: NHANES 2013–2014. J Endocrinol Invest. https://doi.org/10.1007/s40618-021-01709-y
doi: 10.1007/s40618-021-01709-y
pubmed: 34837643
Holt SK, Lopushnyan N, Hotaling J, Sarma AV, Dunn RL, Cleary PA, Braffett BH, Gatcomb P, Martin C, Herman WH, Wessells H (2014) Prevalence of low testosterone and predisposing risk factors in men with type 1 diabetes mellitus: findings from the DCCT/EDIC. J Clin Endocrinol Metab 99(9):E1655–E1660. https://doi.org/10.1210/jc.2014-1317 . (Epub 2014/07/12. PubMed PMID: 25013994; PMCID: PMC4154094)
doi: 10.1210/jc.2014-1317
pubmed: 25013994
pmcid: 4154094
Del Giudice F, Glover F, Belladelli F, De Berardinis E, Sciarra A, Salciccia S, Kasman AM, Chen T, Eisenberg ML (2021) Association of daily step count and serum testosterone among men in the United States. Endocrine 72(3):874–881. https://doi.org/10.1007/s12020-021-02631-2
doi: 10.1007/s12020-021-02631-2
pubmed: 33580402
pmcid: 8159788
John GB, Cheng CY, Kuro-o M (2011) Role of Klotho in aging, phosphate metabolism, and CKD. Am J Kidney Dis 58(1):127–134. https://doi.org/10.1053/j.ajkd.2010.12.027 . (Epub 2011/04/19. PubMed PMID: 21496980; PMCID: PMC3191324)
doi: 10.1053/j.ajkd.2010.12.027
pubmed: 21496980
pmcid: 3191324
Chen Y-Y, Chen W-L (2022) The relationship between polycyclic aromatic hydrocarbons exposure and serum klotho among adult population. BMC Geriatr 22(1):198. https://doi.org/10.1186/s12877-022-02924-9
doi: 10.1186/s12877-022-02924-9
pubmed: 35287592
pmcid: 8919518
Mostafidi E, Moeen A, Nasri H, Ghorbani Hagjo A, Ardalan M (2016) Serum klotho levels in trained athletes. Nephrourol Mon. 8(1):e30245. https://doi.org/10.5812/numonthly.30245 . (PubMed PMID: 26981496)
doi: 10.5812/numonthly.30245
pubmed: 26981496
pmcid: 4780197
Kuwahara N, Sasaki S, Kobara M, Nakata T, Tatsumi T, Irie H, Narumiya H, Hatta T, Takeda K, Matsubara H, Hushiki S (2008) HMG-CoA reductase inhibition improves anti-aging klotho protein expression and arteriosclerosis in rats with chronic inhibition of nitric oxide synthesis. Int J Cardiol 123(2):84–90. https://doi.org/10.1016/j.ijcard.2007.02.029 . (Epub 2007/04/17. PubMed PMID: 17434618)
doi: 10.1016/j.ijcard.2007.02.029
pubmed: 17434618
Lim K, Groen A, Molostvov G, Lu T, Lilley KS, Snead D, James S, Wilkinson IB, Ting S, Hsiao L-L, Hiemstra TF, Zehnder D (2015) α-klotho expression in human tissues. J Clin Endocrinol Metab 100(10):E1308–E1318. https://doi.org/10.1210/jc.2015-1800 . (Epub 2015/08/17. PubMed PMID: 26280509)
doi: 10.1210/jc.2015-1800
pubmed: 26280509
pmcid: 4596032
Hsu SC, Huang SM, Lin SH, Ka SM, Chen A, Shih MF, Hsu YJ (2014) Testosterone increases renal anti-aging klotho gene expression via the androgen receptor-mediated pathway. Biochem J 464(2):221–229. https://doi.org/10.1042/bj20140739 . (Epub 2014/08/28. PubMed PMID: 25163025)
doi: 10.1042/bj20140739
pubmed: 25163025
Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T, Ohyama Y, Kurabayashi M, Kaname T, Kume E, Iwasaki H, Iida A, Shiraki-Iida T, Nishikawa S, Nagai R, Nabeshima YI (1997) Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390(6655):45–51. https://doi.org/10.1038/36285 . (Epub 1997/11/18. PubMed PMID: 9363890)
doi: 10.1038/36285
pubmed: 9363890
Dote-Montero M, Amaro-Gahete FJ, De-la OA, Jurado-Fasoli L, Gutierrez A, Castillo MJ (2019) Study of the association of DHEAS, testosterone and cortisol with S-klotho plasma levels in healthy sedentary middle-aged adults. Exp Gerontol 121:55–61. https://doi.org/10.1016/j.exger.2019.03.010 . (Epub 2019/04/01. PubMed PMID: 30928678)
doi: 10.1016/j.exger.2019.03.010
pubmed: 30928678
Ekström L, Knutsson JE, Stephanou C, Hirschberg AL (2022) Klotho polymorphism in association with serum testosterone and knee strength in women after testosterone administration. Front Physiol. https://doi.org/10.3389/fphys.2022.844133
doi: 10.3389/fphys.2022.844133
pubmed: 35600302
pmcid: 9116293
Zhang Z, Qiu S, Huang X, Jin K, Zhou X, Lin T, Zou X, Yang Q, Yang L, Wei Q (2022) Association between testosterone and serum soluble α-klotho in US males: a cross-sectional study. BMC Geriatr 22(1):570. https://doi.org/10.1186/s12877-022-03265-3 . (Epub 2022/07/13. PubMed PMID: 35820842; PMCID: PMC9275159)
doi: 10.1186/s12877-022-03265-3
pubmed: 35820842
pmcid: 9275159
Prevention CfDCa. NHANES survey methods and analytic guidelines 2020. https://wwwn.cdc.gov/nchs/nhanes/analyticguidelines.aspx . Cited 26 Oct 2020
Prevention CfDCa. NHANES 2013–2014 Questionnaire Data Overview 2020. https://wwwn.cdc.gov/nchs/nhanes/ContinuousNhanes/OverviewQuex.aspx?BeginYear=2013 . Updated 24 Aug 2020
Patrick ME, Azar B (2018) High-intensity drinking. Alcohol Res 39(1):49–55 (Epub 2018/12/18. PubMed PMID: 30557148; PMCID: PMC6104968 interests)
pubmed: 30557148
pmcid: 6104968
Abel EL, Kruger ML, Friedl J (1998) How do physicians define “light,” “moderate,” and “heavy” drinking? Alcohol Clin Exp Res 22(5):979–984. https://doi.org/10.1111/j.1530-0277.1998.tb03692.x . (Epub 1998/09/03. PubMed PMID: 9726266)
doi: 10.1111/j.1530-0277.1998.tb03692.x
pubmed: 9726266
Textor J, van der Zander B, Gilthorpe MS, Liśkiewicz M, Ellison GTH (2016) Robust causal inference using directed acyclic graphs: the R package ‘dagitty.’ Int J Epidemiol 45(6):1887–1894. https://doi.org/10.1093/ije/dyw341
doi: 10.1093/ije/dyw341
pubmed: 28089956
Rivas AM, Mulkey Z, Lado-Abeal J, Yarbrough S (2014) Diagnosing and managing low serum testosterone. Proc (Bayl Univ Med Cent). 27(4):321–324. https://doi.org/10.1080/08998280.2014.11929145 . (Epub 2014/12/09. PubMed PMID: 25484498; PMCID: PMC4255853)
doi: 10.1080/08998280.2014.11929145
pubmed: 25484498
pmcid: 4255853
Zhu A, Andino J, Daignault-Newton S, Chopra Z, Sarma A, Dupree JM (2022) What is a normal testosterone level for young men? Rethinking the 300 ng/dL cutoff for testosterone deficiency in men 20–44 years old. J Urol 208(6):1295–1302. https://doi.org/10.1097/ju.0000000000002928 . (Epub 2022/10/26. PubMed PMID: 36282060)
doi: 10.1097/ju.0000000000002928
pubmed: 36282060
Kapoor D, Clarke S, Stanworth R, Channer KS, Jones TH (2007) The effect of testosterone replacement therapy on adipocytokines and C-reactive protein in hypogonadal men with type 2 diabetes. Eur J Endocrinol 156(5):595–602. https://doi.org/10.1530/EJE-06-0737
doi: 10.1530/EJE-06-0737
pubmed: 17468196
Di Bona D, Accardi G, Virruso C, Candore G, Caruso C (2014) Association of klotho polymorphisms with healthy aging: a systematic review and meta-analysis. Rejuvenation Res 17(2):212–216. https://doi.org/10.1089/rej.2013.1523 . (Epub 2013/10/30. PubMed PMID: 24164579)
doi: 10.1089/rej.2013.1523
pubmed: 24164579
Matsumura Y, Aizawa H, Shiraki-Iida T, Nagai R, Kuro-o M, Nabeshima Y (1998) Identification of the human klotho gene and its two transcripts encoding membrane and secreted klotho protein. Biochem Biophys Res Commun 242(3):626–630. https://doi.org/10.1006/bbrc.1997.8019 . (Epub 1998/02/17. PubMed PMID: 9464267)
doi: 10.1006/bbrc.1997.8019
pubmed: 9464267
Rakugi H, Matsukawa N, Ishikawa K, Yang J, Imai M, Ikushima M, Maekawa Y, Kida I, Miyazaki J, Ogihara T (2007) Anti-oxidative effect of klotho on endothelial cells through cAMP activation. Endocrine 31(1):82–87. https://doi.org/10.1007/s12020-007-0016-9 . (Epub 2007/08/22. PubMed PMID: 17709902)
doi: 10.1007/s12020-007-0016-9
pubmed: 17709902
Dote-Montero M, De-la OA, Castillo MJ, Amaro-Gahete FJ (2020) Predictors of sexual desire and sexual function in sedentary middle-aged adults: the role of lean mass index and S-klotho plasma levels. The FIT-AGEING study. J Sex Med 17(4):665–677. https://doi.org/10.1016/j.jsxm.2020.01.016 . (Epub 2020/02/25. PubMed PMID: 32089483)
doi: 10.1016/j.jsxm.2020.01.016
pubmed: 32089483
Drüeke TB, Massy ZA (2013) Circulating klotho levels: clinical relevance and relationship with tissue klotho expression. Kidney Int 83(1):13–15. https://doi.org/10.1038/ki.2012.370
doi: 10.1038/ki.2012.370
pubmed: 23271484
Bøllehuus Hansen L, Kaludjerovic J, Nielsen JE, Rehfeld A, Poulsen NN, Ide N, Skakkebaek NE, Frederiksen H, Juul A, Lanske B, Blomberg JM (2020) Influence of FGF23 and Klotho on male reproduction: systemic vs direct effects. FASEB J 34(9):12436–12449. https://doi.org/10.1096/fj.202000061RR
doi: 10.1096/fj.202000061RR
pubmed: 32729975
Muraleedharan V, Jones TH (2010) Testosterone and the metabolic syndrome. Ther Adv Endocrinol Metab. 1(5):207–223. https://doi.org/10.1177/2042018810390258 . (Epub 2010/10/01. PubMed PMID: 23148165; PMCID: PMC3474619)
doi: 10.1177/2042018810390258
pubmed: 23148165
pmcid: 3474619
Zhang C, Bian H, Chen Z, Tian B, Wang H, Tu X, Cai B, Jin K, Zheng X, Yang L, Qiu S (2021) The association between dietary inflammatory index and sex hormones among men in the United States. J Urol 206(1):97–103. https://doi.org/10.1097/JU.0000000000001703
doi: 10.1097/JU.0000000000001703
pubmed: 33881929
Jin M, Lou J, Yu H, Miao M, Wang G, Ai H, Huang Y, Han S, Han D, Yu G (2018) Exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin promotes inflammation in mouse testes: the critical role of klotho in sertoli cells. Toxicol Lett 295:134–143. https://doi.org/10.1016/j.toxlet.2018.06.001 . (Epub 2018/06/10. PubMed PMID: 29885354)
doi: 10.1016/j.toxlet.2018.06.001
pubmed: 29885354