Volumetric changes and clinical trajectories in Parkinson's disease: a prospective multicentric study.
Brain atrophy
Clinical progression
Longitudinal study
Parkinson’s disease
Volumetric changes
Journal
Journal of neurology
ISSN: 1432-1459
Titre abrégé: J Neurol
Pays: Germany
ID NLM: 0423161
Informations de publication
Date de publication:
Dec 2023
Dec 2023
Historique:
received:
15
03
2023
accepted:
16
08
2023
revised:
15
05
2023
medline:
9
11
2023
pubmed:
31
8
2023
entrez:
30
8
2023
Statut:
ppublish
Résumé
Longitudinal measures of structural brain changes using MRI in relation to clinical features and progression patterns in PD have been assessed in previous studies, but few were conducted in well-defined and large cohorts, including prospective clinical assessments of both motor and non-motor symptoms. We aimed to identify brain volumetric changes characterizing PD patients, and determine whether regional brain volumetric characteristics at baseline can predict motor, psycho-behavioral and cognitive evolution at one year in a prospective cohort of PD patients. In this multicentric 1 year longitudinal study, PD patients and healthy controls from the MPI-R2* cohort were assessed for demographical, clinical and brain volumetric characteristics. Distinct subgroups of PD patients according to motor, cognitive and psycho-behavioral evolution were identified at the end of follow-up. One hundred and fifty PD patients and 73 control subjects were included in our analysis. Over one year, there was no significant difference in volume variations between PD and control subjects, regardless of the brain region considered. However, we observed a reduction in posterior cingulate cortex volume at baseline in PD patients with motor deterioration at one year (p = 0.017). We also observed a bilateral reduction of the volume of the amygdala (p = 0.015 and p = 0.041) and hippocampus (p = 0.015 and p = 0.053) at baseline in patients with psycho-behavioral deterioration, regardless of age, dopaminergic treatment and center. Brain volumetric characteristics at baseline may predict clinical trajectories at 1 year in PD as posterior cingulate cortex atrophy was associated with motor decline, while amygdala and hippocampus atrophy were associated with psycho-behavioral decline.
Sections du résumé
BACKGROUND
BACKGROUND
Longitudinal measures of structural brain changes using MRI in relation to clinical features and progression patterns in PD have been assessed in previous studies, but few were conducted in well-defined and large cohorts, including prospective clinical assessments of both motor and non-motor symptoms.
OBJECTIVE
OBJECTIVE
We aimed to identify brain volumetric changes characterizing PD patients, and determine whether regional brain volumetric characteristics at baseline can predict motor, psycho-behavioral and cognitive evolution at one year in a prospective cohort of PD patients.
METHODS
METHODS
In this multicentric 1 year longitudinal study, PD patients and healthy controls from the MPI-R2* cohort were assessed for demographical, clinical and brain volumetric characteristics. Distinct subgroups of PD patients according to motor, cognitive and psycho-behavioral evolution were identified at the end of follow-up.
RESULTS
RESULTS
One hundred and fifty PD patients and 73 control subjects were included in our analysis. Over one year, there was no significant difference in volume variations between PD and control subjects, regardless of the brain region considered. However, we observed a reduction in posterior cingulate cortex volume at baseline in PD patients with motor deterioration at one year (p = 0.017). We also observed a bilateral reduction of the volume of the amygdala (p = 0.015 and p = 0.041) and hippocampus (p = 0.015 and p = 0.053) at baseline in patients with psycho-behavioral deterioration, regardless of age, dopaminergic treatment and center.
CONCLUSION
CONCLUSIONS
Brain volumetric characteristics at baseline may predict clinical trajectories at 1 year in PD as posterior cingulate cortex atrophy was associated with motor decline, while amygdala and hippocampus atrophy were associated with psycho-behavioral decline.
Identifiants
pubmed: 37648911
doi: 10.1007/s00415-023-11947-0
pii: 10.1007/s00415-023-11947-0
doi:
Types de publication
Multicenter Study
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
6033-6043Subventions
Organisme : Association France Parkinson
ID : GAO-2013
Organisme : Clinical research Hospital Program
ID : PHRC-I 2016
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany.
Références
Greenland JC, Williams-Gray CH, Barker RA (2019) The clinical heterogeneity of Parkinson’s disease and its therapeutic implications. Eur J Neurosci 49:328–338. https://doi.org/10.1111/ejn.14094
doi: 10.1111/ejn.14094
pubmed: 30059179
Schrag A, Schott JM (2006) Epidemiological, clinical, and genetic characteristics of early-onset parkinsonism. Lancet Neurol 5:355–363. https://doi.org/10.1016/S1474-4422(06)70411-2
doi: 10.1016/S1474-4422(06)70411-2
pubmed: 16545752
Yang J, Burciu RG, Vaillancourt DE (2018) Longitudinal Progression Markers of Parkinson’s Disease: Current View on Structural Imaging. Curr Neurol Neurosci Rep 18:83. https://doi.org/10.1007/s11910-018-0894-7
doi: 10.1007/s11910-018-0894-7
pubmed: 30280267
pmcid: 8650526
McGhee DJ, Royle PL, Thompson PA, Wright DE, Zajicek JP, Counsell CE (2013) A systematic review of biomarkers for disease progression in Parkinson’s disease. BMC Neurol 13:35. https://doi.org/10.1186/1471-2377-13-35
doi: 10.1186/1471-2377-13-35
pubmed: 23587062
pmcid: 3637496
Sarasso E, Agosta F, Piramide N, Filippi M (2021) Progression of grey and white matter brain damage in Parkinson’s disease: a critical review of structural MRI literature. J Neurol 268:3144–3179. https://doi.org/10.1007/s00415-020-09863-8
doi: 10.1007/s00415-020-09863-8
pubmed: 32378035
Filippi M, Sarasso E, Piramide N, Stojkovic T, Stankovic I, Basaia S, Fontana A, Tomic A, Markovic V, Stefanova E, Kostic VS, Agosta F (2020) Progressive brain atrophy and clinical evolution in Parkinson’s disease. Neuroimage Clin 28:102374. https://doi.org/10.1016/j.nicl.2020.102374
doi: 10.1016/j.nicl.2020.102374
pubmed: 32805678
pmcid: 7453060
Mak E, Su L, Williams GB, Firbank MJ, Lawson RA, Yarnall AJ, Duncan GW, Owen AM, Khoo TK, Brooks DJ, Rowe JB, Barker RA, Burn DJ, O’Brien JT (2015) Baseline and longitudinal grey matter changes in newly diagnosed Parkinson’s disease: ICICLE-PD study. Brain 138:2974–2986. https://doi.org/10.1093/brain/awv211
doi: 10.1093/brain/awv211
pubmed: 26173861
pmcid: 4671477
Nasreddine ZS, Phillips NA, Bédirian V, Charbonneau S, Whitehead V, Collin I, Cummings JL, Chertkow H (2005) The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc 53:695–699. https://doi.org/10.1111/j.1532-5415.2005.53221.x
doi: 10.1111/j.1532-5415.2005.53221.x
pubmed: 15817019
Hughes AJ, Daniel SE, Kilford L, Lees AJ (1992) Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatr 55:181–184
doi: 10.1136/jnnp.55.3.181
Goetz CG, Fahn S, Martinez-Martin P, Poewe W, Sampaio C, Stebbins GT, Stern MB, Tilley BC, Dodel R, Dubois B, Holloway R, Jankovic J, Kulisevsky J, Lang AE, Lees A, Leurgans S, LeWitt PA, Nyenhuis D, Olanow CW, Rascol O, Schrag A, Teresi JA, Van Hilten JJ, LaPelle N (2007) Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): Process, format, and clinimetric testing plan. Mov Disord 22:41–47. https://doi.org/10.1002/mds.21198
doi: 10.1002/mds.21198
pubmed: 17115387
Hoehn MM, Yahr MD (1967) Parkinsonism: onset, progression and mortality. Neurology 17:427–442
doi: 10.1212/WNL.17.5.427
pubmed: 6067254
Schwab RS, England AC (1969) Projection techniques for evaluating surgery in Parkinson’s Disease. E. & S. Livingstone Ltd., Edinburgh
Giladi N, Tal J, Azulay T, Rascol O, Brooks DJ, Melamed E, Oertel W, Poewe WH, Stocchi F, Tolosa E (2009) Validation of the freezing of gait questionnaire in patients with Parkinson’s disease. Mov Disord 24:655–661. https://doi.org/10.1002/mds.21745
doi: 10.1002/mds.21745
pubmed: 19127595
Hamilton M (1960) A rating scale for depression. J Neurol Neurosurg Psychiatry 23:56–62. https://doi.org/10.1136/jnnp.23.1.56
doi: 10.1136/jnnp.23.1.56
pubmed: 14399272
pmcid: 495331
Thompson E (2015) Hamilton Rating Scale for Anxiety (HAM-A). Occup Med (Lond) 65:601. https://doi.org/10.1093/occmed/kqv054
doi: 10.1093/occmed/kqv054
pubmed: 26370845
Sockeel P, Dujardin K, Devos D, Denève C, Destée A, Defebvre L (2006) The Lille apathy rating scale (LARS), a new instrument for detecting and quantifying apathy: validation in Parkinson’s disease. J Neurol Neurosurg Psychiatry 77:579–584. https://doi.org/10.1136/jnnp.2005.075929
doi: 10.1136/jnnp.2005.075929
pubmed: 16614016
pmcid: 2117430
Rieu I, Martinez-Martin P, Pereira B, De Chazeron I, Verhagen Metman L, Jahanshahi M, Ardouin C, Chéreau I, Brefel-Courbon C, Ory-Magne F, Klinger H, Peyrol F, Schupbach M, Dujardin K, Tison F, Houeto JL, Krack P, Durif F (2015) International validation of a behavioral scale in Parkinson’s disease without dementia. Mov Disord 30:705–713. https://doi.org/10.1002/mds.26223
doi: 10.1002/mds.26223
pubmed: 25809278
Shulman LM, Gruber-Baldini AL, Anderson KE, Fishman PS, Reich SG, Weiner WJ (2010) The clinically important difference on the unified Parkinson’s disease rating scale. Arch Neurol 67:64–70. https://doi.org/10.1001/archneurol.2009.295
doi: 10.1001/archneurol.2009.295
pubmed: 20065131
Lhommée E, Wojtecki L, Czernecki V, Witt K, Maier F, Tonder L, Timmermann L, Hälbig TD, Pineau F, Durif F, Witjas T, Pinsker M, Mehdorn M, Sixel-Döring F, Kupsch A, Krüger R, Elben S, Chabardès S, Thobois S, Brefel-Courbon C, Ory-Magne F, Regis J-M, Maltête D, Sauvaget A, Rau J, Schnitzler A, Schüpbach M, Schade-Brittinger C, Deuschl G, Houeto J-L, Krack P, Negovanska V, Welter M-L, Corvol J-C, Agid Y, Navarro S, Meier N, Hartmann A, Hesekamp H, Cornu P, Möller B, Nebel A, Raethjen J, Knudsen K, Volkmann J, Falk D, Paschen S, Meister I, Kuhn J, Donner K, Kessler J, Barbe M, Fink G, Maarouf M, Kühn A, Müller B, Faust K, Gruber D, Schneider G-H, Seigneuret E, Pollak P, Fraix V, Kistner A, Rascol O, Arbus C, Danet L, Chaynes P, Groiss SJ, Hartmann C, Südmeyer M, Partowinia-Peters M, Vesper J, Ledily S, Damier P, Raoul S, Trenkwalder C, Richter-Dreske W, Wächter T, Weiss D, Eusebio A, Azulay JP, Polo G, Pinto S, Levin J, Dornier S, Pene F, Hourton D, Quintin M, Hoffart-Jourdain C, Brocvielle H, Balthasar K, Stein M, Harnisch S, Reuss A, Aminossadati B, Nasemann C, Oertel W, Bataille B, Hellwig D, Gharabaghi A, Amtage F, Mertens P, Kloss M, Post B, Speelman H (2018) Behavioural outcomes of subthalamic stimulation and medical therapy versus medical therapy alone for Parkinson’s disease with early motor complications (EARLYSTIM trial): secondary analysis of an open-label randomised trial. Lancet Neurol 17:223–231. https://doi.org/10.1016/S1474-4422(18)30035-8
doi: 10.1016/S1474-4422(18)30035-8
pubmed: 29452685
Li A, Yue L, Xiao S, Liu M (2022) Cognitive Function Assessment and Prediction for Subjective Cognitive Decline and Mild Cognitive Impairment. Brain Imaging Behav 16:645–658. https://doi.org/10.1007/s11682-021-00545-1
doi: 10.1007/s11682-021-00545-1
pubmed: 34491529
Bender R, Lange S (2001) Adjusting for multiple testing–when and how? J Clin Epidemiol 54:343–349. https://doi.org/10.1016/s0895-4356(00)00314-0
doi: 10.1016/s0895-4356(00)00314-0
pubmed: 11297884
Feise RJ (2002) Do multiple outcome measures require p-value adjustment? BMC Med Res Methodol 2:8
doi: 10.1186/1471-2288-2-8
pubmed: 12069695
pmcid: 117123
Ibarretxe-Bilbao N, Junque C, Segura B, Baggio HC, Marti MJ, Valldeoriola F, Bargallo N, Tolosa E (2012) Progression of cortical thinning in early Parkinson’s disease: Cortical Thinning in Early PD. Mov Disord 27:1746–1753. https://doi.org/10.1002/mds.25240
doi: 10.1002/mds.25240
pubmed: 23124622
Mollenhauer B, Zimmermann J, Sixel-Döring F, Focke NK, Wicke T, Ebentheuer J, Schaumburg M, Lang E, Trautmann E, Zetterberg H, Taylor P, Friede T, Trenkwalder C (2016) Monitoring of 30 marker candidates in early Parkinson disease as progression markers. Neurology 87:168–177. https://doi.org/10.1212/WNL.0000000000002651
doi: 10.1212/WNL.0000000000002651
pubmed: 27164658
pmcid: 4940068
Jia X, Liang P, Li Y, Shi L, Wang D, Li K (2015) Longitudinal Study of Gray Matter Changes in Parkinson Disease. AJNR Am J Neuroradiol 36:2219–2226. https://doi.org/10.3174/ajnr.A4447
doi: 10.3174/ajnr.A4447
pubmed: 26359153
pmcid: 7964292
Melzer TR, Myall DJ, MacAskill MR, Pitcher TL, Livingston L, Watts R, Keenan RJ, Dalrymple-Alford JC, Anderson TJ (2015) Tracking Parkinson’s Disease over One Year with Multimodal Magnetic Resonance Imaging in a Group of Older Patients with Moderate Disease. PLoS ONE. 10:e0143923. https://doi.org/10.1371/journal.pone.0143923
doi: 10.1371/journal.pone.0143923
pubmed: 26714266
pmcid: 4694717
Blair JC, Barrett MJ, Patrie J, Flanigan JL, Sperling SA, Elias WJ, Druzgal TJ (2019) Brain MRI Reveals Ascending Atrophy in Parkinson’s Disease Across Severity. Front Neurol 10:1329. https://doi.org/10.3389/fneur.2019.01329
doi: 10.3389/fneur.2019.01329
pubmed: 31920949
pmcid: 6930693
Oh BH, Moon HC, Kim A, Kim HJ, Cheong CJ, Park YS (2021) Prefrontal and hippocampal atrophy using 7-tesla magnetic resonance imaging in patients with Parkinson’s disease. Acta Radiol Open 10:2058460120988097. https://doi.org/10.1177/2058460120988097
doi: 10.1177/2058460120988097
pubmed: 33786201
pmcid: 7958639
Ramírez-Ruiz B, Martí MJ, Tolosa E, Bartrés-Faz D, Summerfield Ch, Salgado-Pineda P, Gómez-Ansón B, Junqué C (2005) Longitudinal evaluation of cerebral morphological changes in Parkinson’s disease with and without dementia. J Neurol 252:1345–1352. https://doi.org/10.1007/s00415-005-0864-2
doi: 10.1007/s00415-005-0864-2
pubmed: 15995795
Benarroch EE (2015) The amygdala: Functional organization and involvement in neurologic disorders. Neurology 84:313–324. https://doi.org/10.1212/WNL.0000000000001171
doi: 10.1212/WNL.0000000000001171
pubmed: 25527268
Ibarretxe-Bilbao N, Ramírez-Ruiz B, Tolosa E, Martí MJ, Valldeoriola F, Bargalló N, Junqué C (2008) Hippocampal head atrophy predominance in Parkinson’s disease with hallucinations and with dementia. J Neurol 255:1324–1331. https://doi.org/10.1007/s00415-008-0885-8
doi: 10.1007/s00415-008-0885-8
pubmed: 18821043
Carey G, Görmezoğlu M, de Jong JJA, Hofman PAM, Backes WH, Dujardin K, Leentjens AFG (2021) Neuroimaging of Anxiety in Parkinson’s Disease: A Systematic Review. Mov Disord 36:327–339. https://doi.org/10.1002/mds.28404
doi: 10.1002/mds.28404
pubmed: 33289195
Thobois S, Prange S, Sgambato-Faure V, Tremblay L, Broussolle E (2017) Imaging the Etiology of Apathy, Anxiety, and Depression in Parkinson’s Disease: Implication for Treatment. Curr Neurol Neurosci Rep 17:76. https://doi.org/10.1007/s11910-017-0788-0
doi: 10.1007/s11910-017-0788-0
pubmed: 28822071
Melzer TR, Watts R, MacAskill MR, Pitcher TL, Livingston L, Keenan RJ, Dalrymple-Alford JC, Anderson TJ (2012) Grey matter atrophy in cognitively impaired Parkinson’s disease. J Neurol Neurosurg Psychiatry 83:188–194. https://doi.org/10.1136/jnnp-2011-300828
doi: 10.1136/jnnp-2011-300828
pubmed: 21890574
Kamagata K, Motoi Y, Hori M, Suzuki M, Nakanishi A, Shimoji K, Kyougoku S, Kuwatsuru R, Sasai K, Abe O, Mizuno Y, Aoki S, Hattori N (2011) Posterior hypoperfusion in Parkinson’s disease with and without dementia measured with arterial spin labeling MRI. J Magn Reson Imaging 33:803–807. https://doi.org/10.1002/jmri.22515
doi: 10.1002/jmri.22515
pubmed: 21448943
Hosokai Y, Nishio Y, Hirayama K, Takeda A, Ishioka T, Sawada Y, Suzuki K, Itoyama Y, Takahashi S, Fukuda H, Mori E (2009) Distinct patterns of regional cerebral glucose metabolism in Parkinson’s disease with and without mild cognitive impairment. Mov Disord 24:854–862. https://doi.org/10.1002/mds.22444
doi: 10.1002/mds.22444
pubmed: 19199357
Vogt BA (2019) Cingulate cortex in Parkinson’s disease. Handb Clin Neurol 166:253–266. https://doi.org/10.1016/B978-0-444-64196-0.00013-3
doi: 10.1016/B978-0-444-64196-0.00013-3
pubmed: 31731914
de Schipper LJ, van der Grond J, Marinus J, Henselmans JML, van Hilten JJ (2017) Loss of integrity and atrophy in cingulate structural covariance networks in Parkinson’s disease. NeuroImage 15:587–593. https://doi.org/10.1016/j.nicl.2017.05.012
doi: 10.1016/j.nicl.2017.05.012
pubmed: 28652971
pmcid: 5477092
Goldman JG, Stebbins GT, Dinh V, Bernard B, Merkitch D, deToledo-Morrell L, Goetz CG (2014) Visuoperceptive region atrophy independent of cognitive status in patients with Parkinson’s disease with hallucinations. Brain. 137:849–859. https://doi.org/10.1093/brain/awt360
doi: 10.1093/brain/awt360
pubmed: 24480486
pmcid: 3983409
Vercruysse S, Leunissen I, Vervoort G, Vandenberghe W, Swinnen S, Nieuwboer A (2015) Microstructural changes in white matter associated with freezing of gait in Parkinson’s disease: FOg-Related White Matter Changes. Mov Disord 30:567–576. https://doi.org/10.1002/mds.26130
doi: 10.1002/mds.26130
pubmed: 25640958
Evers LJW, Krijthe JH, Meinders MJ, Bloem BR, Heskes TM (2019) Measuring Parkinson’s disease over time: the real-world within-subject reliability of the MDS-UPDRS. Mov Disord 34:1480–1487. https://doi.org/10.1002/mds.27790
doi: 10.1002/mds.27790
pubmed: 31291488
pmcid: 6851993
Aleksovski D, Miljkovic D, Bravi D, Antonini A (2018) Disease progression in Parkinson subtypes: the PPMI dataset. Neurol Sci 39:1971–1976. https://doi.org/10.1007/s10072-018-3522-z
doi: 10.1007/s10072-018-3522-z
pubmed: 30109466
Lessig S, Nie D, Xu R, Corey-Bloom J (2012) Changes on brief cognitive instruments over time in Parkinson’s disease. Mov Disord 27:1125–1128. https://doi.org/10.1002/mds.25070
doi: 10.1002/mds.25070
pubmed: 22692724
Makarious MB, Leonard HL, Vitale D, Iwaki H, Sargent L, Dadu A, Violich I, Hutchins E, Saffo D, Bandres-Ciga S, Kim JJ, Song Y, Maleknia M, Bookman M, Nojopranoto W, Campbell RH, Hashemi SH, Botia JA, Carter JF, Craig DW, Van Keuren-Jensen K, Morris HR, Hardy JA, Blauwendraat C, Singleton AB, Faghri F, Nalls MA (2022) Multi-modality machine learning predicting Parkinson’s disease. NPJ Parkinsons Dis 8:35. https://doi.org/10.1038/s41531-022-00288-w
doi: 10.1038/s41531-022-00288-w
pubmed: 35365675
pmcid: 8975993