Preliminary study on toxicological mechanism of golden cuttlefish (Sepia esculenta) larvae exposed to cd.

Cd Neurotoxicity Oxidative stress Protein-protein interaction network Sepia esculenta Transcriptome

Journal

BMC genomics
ISSN: 1471-2164
Titre abrégé: BMC Genomics
Pays: England
ID NLM: 100965258

Informations de publication

Date de publication:
30 Aug 2023
Historique:
received: 18 06 2023
accepted: 27 08 2023
medline: 1 9 2023
pubmed: 31 8 2023
entrez: 30 8 2023
Statut: epublish

Résumé

Cadmium (Cd) flows into the ocean with industrial and agricultural pollution and significantly affects the growth and development of economic cephalopods such as Sepia esculenta, Amphioctopus fangsiao, and Loligo japonica. As of now, the reasons why Cd affects the growth and development of S. esculenta are not yet clear. In this study, transcriptome and four oxidation and toxicity indicators are used to analyze the toxicological mechanism of Cd-exposed S. esculenta larvae. Indicator results indicate that Cd induces oxidative stress and metal toxicity. Functional enrichment analysis results suggest that larval ion transport, cell adhesion, and some digestion and absorption processes are inhibited, and the cell function is damaged. Comprehensive analysis of protein-protein interaction network and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was used to explore S. esculenta larval toxicological mechanisms, and we find that among the 20 identified key genes, 14 genes are associated with neurotoxicity. Most of them are down-regulated and enriched to the neuroactive ligand-receptor interaction signaling pathway, suggesting that larval nervous system might be destroyed, and the growth, development, and movement process are significantly affected after Cd exposure. S. esculenta larvae suffered severe oxidative damage after Cd exposure, which may inhibit digestion and absorption functions, and disrupt the stability of the nervous system. Our results lay a function for understanding larval toxicological mechanisms exposed to heavy metals, promoting the development of invertebrate environmental toxicology, and providing theoretical support for S. esculenta artificial culture.

Sections du résumé

BACKGROUND BACKGROUND
Cadmium (Cd) flows into the ocean with industrial and agricultural pollution and significantly affects the growth and development of economic cephalopods such as Sepia esculenta, Amphioctopus fangsiao, and Loligo japonica. As of now, the reasons why Cd affects the growth and development of S. esculenta are not yet clear.
RESULTS RESULTS
In this study, transcriptome and four oxidation and toxicity indicators are used to analyze the toxicological mechanism of Cd-exposed S. esculenta larvae. Indicator results indicate that Cd induces oxidative stress and metal toxicity. Functional enrichment analysis results suggest that larval ion transport, cell adhesion, and some digestion and absorption processes are inhibited, and the cell function is damaged. Comprehensive analysis of protein-protein interaction network and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was used to explore S. esculenta larval toxicological mechanisms, and we find that among the 20 identified key genes, 14 genes are associated with neurotoxicity. Most of them are down-regulated and enriched to the neuroactive ligand-receptor interaction signaling pathway, suggesting that larval nervous system might be destroyed, and the growth, development, and movement process are significantly affected after Cd exposure.
CONCLUSIONS CONCLUSIONS
S. esculenta larvae suffered severe oxidative damage after Cd exposure, which may inhibit digestion and absorption functions, and disrupt the stability of the nervous system. Our results lay a function for understanding larval toxicological mechanisms exposed to heavy metals, promoting the development of invertebrate environmental toxicology, and providing theoretical support for S. esculenta artificial culture.

Identifiants

pubmed: 37649007
doi: 10.1186/s12864-023-09630-9
pii: 10.1186/s12864-023-09630-9
pmc: PMC10466719
doi:

Substances chimiques

Cadmium 00BH33GNGH

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

503

Subventions

Organisme : the earmarked fund for CARS-49
ID : CARS-49
Organisme : Natural Science Foundation of Shandong Province
ID : ZR2019BC052

Informations de copyright

© 2023. BioMed Central Ltd., part of Springer Nature.

Références

Anal Biochem. 2017 May 1;524:13-30
pubmed: 27789233
Toxicol Appl Pharmacol. 2011 Jul 15;254(2):86-99
pubmed: 21296097
Nurs Stand. 2014 Apr 16-22;28(33):46-50
pubmed: 24734837
Aquat Toxicol. 2020 Sep;226:105561
pubmed: 32688145
Fish Shellfish Immunol. 2022 May;124:82-91
pubmed: 35367377
Gene. 2015 Nov 1;572(1):146-152
pubmed: 26192462
Neurol Genet. 2017 Jan 31;3(1):e129
pubmed: 28180184
Environ Res. 2017 May;155:123-133
pubmed: 28214715
Nurs Stand. 2014 Apr 2-8;28(31):46-51
pubmed: 24689422
J Biol Chem. 2013 Jul 19;288(29):21029-21042
pubmed: 23720773
Transl Psychiatry. 2021 Dec 20;11(1):643
pubmed: 34930904
Development. 2021 Apr 15;148(8):
pubmed: 33913483
Comp Biochem Physiol C Toxicol Pharmacol. 2016 Jan;179:49-56
pubmed: 26342857
Cell Tissue Res. 2019 Sep;377(3):289-292
pubmed: 31478136
Behav Brain Res. 2021 Aug 6;411:113378
pubmed: 34029630
Nat Neurosci. 2017 Aug;20(8):1043-1051
pubmed: 28628100
Aquat Toxicol. 2012 Jan 15;106-107:140-6
pubmed: 22155426
Brain Res Bull. 2018 Jun;140:299-310
pubmed: 29842900
J Med Entomol. 2021 Nov 9;58(6):2284-2291
pubmed: 33999150
J Hazard Mater. 2019 Mar 15;366:386-394
pubmed: 30551084
Exp Suppl. 2012;101:133-64
pubmed: 22945569
Environ Sci Technol. 2011 Apr 15;45(8):3710-7
pubmed: 21417318
Chemosphere. 2010 Oct;81(6):701-10
pubmed: 20843535
Electrophoresis. 2007 Jul;28(14):2368-78
pubmed: 17577198
Comp Biochem Physiol C Toxicol Pharmacol. 2014 Nov;166:14-23
pubmed: 24999064
G3 (Bethesda). 2018 Jul 31;8(8):2825-2832
pubmed: 29950427
Environ Sci Technol. 2006 Jul 1;40(13):4055-65
pubmed: 16856717
Eur J Neurosci. 2003 Feb;17(3):507-16
pubmed: 12581168
Genome Biol. 2014;15(12):550
pubmed: 25516281
Behav Neurosci. 2001 Jun;115(3):640-9
pubmed: 11439453
Genes Genomics. 2018 Mar;40(3):253-263
pubmed: 29892796
PLoS Genet. 2019 Aug 19;15(8):e1008133
pubmed: 31425511
Sci Rep. 2015 Dec 09;5:17751
pubmed: 26648252
Dev Comp Immunol. 2016 Jun;59:77-88
pubmed: 26801100
Sci Total Environ. 2015 Dec 15;537:170-9
pubmed: 26282750
Ecotoxicol Environ Saf. 2022 Sep 1;242:113944
pubmed: 35926411
Gene. 2013 Apr 15;518(2):388-96
pubmed: 23313880
PLoS One. 2015 Sep 11;10(9):e0137432
pubmed: 26361355
EMBO J. 1999 Aug 16;18(16):4361-71
pubmed: 10449402
Neuropharmacology. 2021 Nov 1;199:108740
pubmed: 34343611
Environ Pollut. 2021 Sep 1;284:117533
pubmed: 34261227
PLoS One. 2011;6(5):e20085
pubmed: 21647448
Metabolism. 2000 Feb;49(2 Suppl 1):3-8
pubmed: 10693912
Amino Acids. 2007 Jan;32(1):53-7
pubmed: 17469226
Int J Mol Sci. 2016 Oct 22;17(10):
pubmed: 27782082
Chemosphere. 2022 Feb;288(Pt 2):132562
pubmed: 34653491
Comp Biochem Physiol C Toxicol Pharmacol. 2018 Jul;209:28-36
pubmed: 29625344
J Agric Food Chem. 2018 Aug 1;66(30):8132-8141
pubmed: 29975524
Front Mol Neurosci. 2018 Jan 31;11:23
pubmed: 29445326
Clinics (Sao Paulo). 2018 Jul 10;73:e16550
pubmed: 29995097
J Invertebr Pathol. 1991 May;57(3):380-94
pubmed: 2066577
Curr Top Membr. 2014;73:357-82
pubmed: 24745989
Aquat Toxicol. 2017 Nov;192:171-177
pubmed: 28963925
J Immunol. 2007 Dec 1;179(11):7209-14
pubmed: 18025161
Antioxid Redox Signal. 2014 May 20;20(15):2372-415
pubmed: 23875805
Cold Spring Harb Protoc. 2010 Jun;2010(6):pdb.prot5439
pubmed: 20516177
Comp Biochem Physiol Comp Physiol. 1992 Oct;103(2):227-39
pubmed: 1359948
Neurol Sci. 2021 Oct;42(10):4095-4107
pubmed: 34379238
Arch Biochem Biophys. 2010 Sep 1;501(1):58-64
pubmed: 20513639
PLoS One. 2019 May 2;14(5):e0216159
pubmed: 31048868
J Exp Biol. 2014 Apr 1;217(Pt 7):1180-6
pubmed: 24311815
Mutat Res. 2003 Dec 10;533(1-2):107-20
pubmed: 14643415
PLoS Pathog. 2014 Aug 14;10(8):e1004246
pubmed: 25121497
J Neurosci. 2008 Jul 9;28(28):7104-12
pubmed: 18614679
Oxid Med Cell Longev. 2019 Nov 15;2019:6840540
pubmed: 31827694
Environ Sci Pollut Res Int. 2021 Jul;28(26):35038-35050
pubmed: 33665691
Bioinformatics. 2012 Jul 1;28(13):1805-6
pubmed: 22543366
Sci Rep. 2016 Jan 20;6:19405
pubmed: 26786678
Front Immunol. 2022 Sep 23;13:963931
pubmed: 36211441
Transl Cancer Res. 2021 Oct;10(10):4514-4522
pubmed: 35116307
Neural Regen Res. 2021 Sep;16(9):1762-1763
pubmed: 33510066
Philos Trans R Soc Lond B Biol Sci. 2001 Oct 29;356(1414):1565-72
pubmed: 11604123
Nurs Stand. 2014 Apr 15;28(32):45-9
pubmed: 24712631
Genetics. 2018 Oct;210(2):357-396
pubmed: 30287514
Dev Biol. 2017 Oct 1;430(1):80-89
pubmed: 28807780
Nucleic Acids Res. 2019 Jan 8;47(D1):D607-D613
pubmed: 30476243
Chemosphere. 2011 Jul;84(5):689-94
pubmed: 21529889
Fish Shellfish Immunol. 2015 Jan;42(1):58-65
pubmed: 25449371
Environ Int. 2004 Feb;29(8):1097-104
pubmed: 14680893
Comp Biochem Physiol B Biochem Mol Biol. 2021 Oct-Dec;256:110632
pubmed: 34119651
Biomolecules. 2019 Nov 23;9(12):
pubmed: 31771155
Environ Toxicol Pharmacol. 2021 Aug;86:103683
pubmed: 34052434
J Neuroimmune Pharmacol. 2018 Dec;13(4):523-531
pubmed: 30143926
J Neurophysiol. 2011 Aug;106(2):817-27
pubmed: 21613582
Cereb Cortex. 2021 Mar 5;31(4):1914-1926
pubmed: 33290502
Toxics. 2021 Aug 29;9(9):
pubmed: 34564353
Aquat Toxicol. 2022 Aug;249:106211
pubmed: 35667248
J Sci Food Agric. 2022 Jun;102(8):3277-3286
pubmed: 34802153
Mar Pollut Bull. 2022 Oct;183:114084
pubmed: 36058177
Fish Shellfish Immunol. 2017 Aug;67:643-654
pubmed: 28651821
J Environ Sci Health A Tox Hazard Subst Environ Eng. 2020;55(4):448-456
pubmed: 31885323
J Biomol Struct Dyn. 2016 Aug;34(8):1763-77
pubmed: 26360528
Eur J Biochem. 1974 Sep 16;47(3):469-74
pubmed: 4215654
IUBMB Life. 2017 Apr;69(4):236-245
pubmed: 28296007
Biochem Biophys Res Commun. 2018 Sep 10;503(3):1919-1926
pubmed: 30064912
Clin Neurophysiol. 2020 Jun;131(6):1180-1186
pubmed: 32299001
Nat Rev Immunol. 2004 Mar;4(3):181-9
pubmed: 15039755
Neuron. 2010 Apr 15;66(1):101-13
pubmed: 20399732
Zoolog Sci. 2008 Jan;25(1):14-21
pubmed: 18275241
Nucleic Acids Res. 2009 Oct;37(18):e123
pubmed: 19620212
MicroPubl Biol. 2018 Sep 06;2018:
pubmed: 32550395
Environ Pollut. 2018 Dec;243(Pt A):645-653
pubmed: 30219590
Cancer Med. 2020 Jul;9(13):4743-4755
pubmed: 32356618
BMC Genomics. 2021 Feb 22;22(1):129
pubmed: 33618656
Biometals. 2020 Dec;33(6):397-413
pubmed: 33011849
Curr Opin Cell Biol. 2015 Oct;36:71-9
pubmed: 26210104
Fish Shellfish Immunol. 2022 Dec;131:127-136
pubmed: 36202203
Cell Rep. 2022 Mar 29;38(13):110577
pubmed: 35354038
Fish Shellfish Immunol. 2021 Oct;117:113-123
pubmed: 34333127
Biology (Basel). 2021 Feb 18;10(2):
pubmed: 33670451
Anal Biochem. 1972 Jun;47(2):389-94
pubmed: 4556490
PLoS One. 2013 Nov 18;8(11):e80475
pubmed: 24260400
Dev Comp Immunol. 2018 Jan;78:100-113
pubmed: 28923591
Brief Bioinform. 2011 Sep;12(5):449-62
pubmed: 21873635

Auteurs

Xiumei Liu (X)

College of Life Sciences, Yantai University, Yantai, 264005, China.

Xiaokai Bao (X)

School of Agriculture, Ludong University, Yantai, 264025, China.

Jianmin Yang (J)

School of Agriculture, Ludong University, Yantai, 264025, China.

Xibo Zhu (X)

Fishery Technology Service Center of Lanshan District, Rizhao, 276800, China. hyghjjk@rz.shandong.cn.

Zan Li (Z)

School of Agriculture, Ludong University, Yantai, 264025, China. lizanlxm@163.com.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH