Non-Classical Self-Assembly of Anisotropic Magneto-Organosilica Janus Particles Possessing Surfactant Properties and the Field-Triggered Breakdown of Surface Activity and Amphiphilic Properties.
Janus nanostructures
active colloids
magnetic surfactants
particle-based materials
Journal
Small (Weinheim an der Bergstrasse, Germany)
ISSN: 1613-6829
Titre abrégé: Small
Pays: Germany
ID NLM: 101235338
Informations de publication
Date de publication:
30 Aug 2023
30 Aug 2023
Historique:
revised:
26
07
2023
received:
25
05
2023
medline:
31
8
2023
pubmed:
31
8
2023
entrez:
31
8
2023
Statut:
aheadofprint
Résumé
Using colloidal particles as models to understand processes on a smaller scale is a precious approach. Compared to molecules, particles are less defined, but their architecture can be more complex and so is their long-range interaction. One can observe phenomena that are unknown or much more difficult to realize on the molecular level. The current paper focuses on particle-based surfactants and reports on numerous unexpected properties. The main goal is creating an amphiphilic system with responsiveness in surface activity and associated self-organization phenomena depending on applying an external trigger, preferably a physical field. A key step is the creation of a Janus-type particle characterized by two types of dipoles (electric and magnetic) which geometrically stand orthogonal to each other. In a field, one can control which contribution and direction dominate the interparticle interactions. As a result, one can drastically change the system's properties. The features of ferrite-core organosilica-shell particles with grain-like morphology modified by click chemistry are studied in response to spatially isotropic and anisotropic triggers. A highly unusual aggregation-dissolution-reaggregation sequence w as discovered. Using a magnetic field, one can even switch off the amphiphilic properties and use this for the field-triggered breaking of multiphase systems such as emulsions.
Identifiants
pubmed: 37649193
doi: 10.1002/smll.202304380
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e2304380Subventions
Organisme : German Research Foundation
ID : EXC 2122
Informations de copyright
© 2023 The Authors. Small published by Wiley-VCH GmbH.
Références
C. Reichhardt, C. Reichhardt, Annu. Rev. Condens. Matter Phys. 2017, 8, 51.
D. Jin, L. Zhang, Acc. Chem. Res. 2022, 55, 98.
A. Zottl, H. Stark, J. Phys. Condens. Matter 2016, 28, 253001.
S. Ebbens, Curr. Opin. Colloid Interface Sci. 2016, 21, 14.
J. Deng, M. Molaei, N. Chisholm, T. Yao, A. Read, K. Stebe, Curr. Opin. Colloid Interface Sci. 2022, 61, 101629.
J. Li, T. Li, T. Xu, M. Kiristi, W. Liu, Z. Wu, J. Wang, Nano Lett. 2015, 15, 4814.
H. Lv, Y. Xing, X. Du, T. Xu, X. Zhang, Soft Matter 2020, 16, 4961.
A. Sánchez, K. Ovejero Paredes, J. Ruiz-Cabello, P. Martínez-Ruíz, J. M. Pingarrón, R. Villalonga, M. Filice, ACS Appl. Mater. Interfaces 2018, 10, 31032.
J. Hu, S. Zhou, Y. Sun, X. Fang, L. Wu, Chem. Soc. Rev. 2012, 41, 4356.
S. Razavi, L. M. Hernandez, A. Read, W. L. Vargas, I. Kretzschmar, J. Colloid Interface Sci. 2020, 558, 95.
K. Lee, Y. Yu, J. Mater. Chem. B 2017, 5, 4410.
A. Kirillova, C. Marschelke, A. Synytska, ACS Appl. Mater. Interfaces 2019, 11, 9643.
S. Bhaskar, K.-H. Roh, X. Jiang, G. L. Baker, J. Lahann, Macromol. Rapid Commun. 2008, 29, 1655.
Z. Nie, W. Li, M. Seo, S. Xu, E. Kumacheva, J. Am. Chem. Soc. 2006, 128, 9408.
L. Hong, S. Jiang, S. Granick, Langmuir 2006, 22, 9495.
A. Wittmeier, A. Leeth Holterhoff, J. Johnson, J. G. Gibbs, Langmuir 2015, 31, 10402.
D. Wu, B. P. Binks, A. Honciuc, Langmuir 2018, 34, 1225.
H.-M. Gao, Z.-Y. Lu, H. Liu, Z.-Y. Sun, L.-J. An, J. Chem. Phys. 2014, 141, 134907.
C. Lanz, M. Schlötter, N. Klinkenberg, P. Besirske, S. Polarz, Angew. Chem., Int. Ed. 2020, 59, 8902.
C. Shasha, K. M. Krishnan, Adv. Mater. 2021, 33, 1904131.
M. Chariaou, L. Rahn-Lee, J. Kind, I. García-Rubio, A. Komeili, A. U. Gehring, Biophys. J. 2015, 108, 1268.
J. Wang, Z. Peng, Y. Huang, Q. Chen, J. Cryst. Growth 2004, 263, 616.
Z. Zhou, X. Zhu, D. Wu, Q. Chen, D. Huang, C. Sun, J. Xin, K. Ni, J. Gao, Chem. Mater. 2015, 27, 3505.
R. Moreno, S. Poyser, D. Meilak, A. Meo, S. Jenkins, V. K. Lazarov, G. Vallejo-Fernandez, S. Majetich, R. F. L. Evans, Sci. Rep. 2020, 10, 2722.
Y. Yang, X. Liu, Y. Lv, T. S. Herng, X. Xu, W. Xia, T. Zhang, J. Fang, W. Xiao, J. Ding, Adv. Funct. Mater. 2015, 25, 812.
Z. Xu, Z. Wei, P. He, X. Duan, Z. Yang, Y. Zhou, D. Jia, Chem. Commun. 2017, 53, 11052.
H. Sun, B. Chen, X. Jiao, Z. Jiang, Z. Qin, D. Chen, J. Phys. Chem. C 2012, 116, 5476.
H. L. Ding, Y. X. Zhang, S. Wang, J. M. Xu, S. C. Xu, G. H. Li, Chem. Mater. 2012, 24, 4572.
R. Hoogenboom, Angew. Chem., Int. Ed. 2010, 49, 3415.
Y. R. Espinosa Silva, J. R. Grigera, RSC Adv. 2015, 5, 70005.
S. Kim, K. Hyun, J. Y. Moon, C. Clasen, K. H. Ahn, Langmuir 2015, 31, 1892.
T. Kuroiwa, I. Kobayashi, A. M. Chuah, M. Nakajima, S. Ichikawa, Adv. Colloid Interface Sci. 2015, 226, 86.
I. V. Perevoshchikova, E. A. Kotova, Y. N. Antonenko, Biochemistry (Moscow) 2011, 76, 497.
P. Kapusta, PicoQuant GmbH 2010, 2, 1.
E. R. Likhachev, Tech. Phys. 2003, 48, 514.