Heterogenous Slippery Surfaces: Enabling Spontaneous and Rapid Transport of Viscous Liquids with Viscosities Exceeding 10 000 mPa s.

SLIPS directional liquid transport liquid manipulation microfluidics viscosity wetting and capillary

Journal

Small (Weinheim an der Bergstrasse, Germany)
ISSN: 1613-6829
Titre abrégé: Small
Pays: Germany
ID NLM: 101235338

Informations de publication

Date de publication:
30 Aug 2023
Historique:
revised: 07 08 2023
received: 19 05 2023
medline: 31 8 2023
pubmed: 31 8 2023
entrez: 31 8 2023
Statut: aheadofprint

Résumé

Superhydrophobic and slippery lubricant-infused surfaces have garnered significant attention for their potential to passively transport low-viscosity liquids like water (1 mPa s). Despite exciting progress, these designs have proven ineffective for transporting high-viscosity liquids such as polydimethylsiloxane (5500 mPa s) due to their inherent limitations imposed by the homogenous surface design, resulting in high viscous drags and compromised capillary forces. Here, a heterogenous water-infused divergent surface (WIDS) is proposed that achieves spontaneous, rapid, and long-distance transport of viscous liquids. WIDS reduces viscous drag by spatially isolating the viscous liquids and surface roughness through its heterogenous, slippery topological design, and generates capillary forces through its heterogenous wetting distributions. The essential role of surface heterogeneity in viscous liquid transport is theoretically and experimentally verified. Remarkably, such a heterogenous paradigm enables transporting liquids with viscosities exceeding 12 500 mPa s, which is two orders of magnitude higher than state-of-the-art techniques. Furthermore, this heterogenous design is generic for various viscous liquids and can be made flexible, making it promising for various systems that require viscous liquid management, such as micropatterning.

Identifiants

pubmed: 37649201
doi: 10.1002/smll.202304218
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e2304218

Subventions

Organisme : National Natural Science Foundation of China
ID : 52375442
Organisme : National Natural Science Foundation of China
ID : 51875285
Organisme : Natural Science Foundation of Jiangsu Province
ID : BK20190066
Organisme : Fok Ying Tung Education Foundation
ID : 171045
Organisme : Fok Ying Tung Education Foundation
ID : 20193218210002
Organisme : Fundamental Research Funds for the Central Universities
ID : NT2023010
Organisme : Research Grants Council of Hong Kong
ID : 11213320
Organisme : Research Grants Council of Hong Kong
ID : C1006-20WF

Informations de copyright

© 2023 Wiley-VCH GmbH.

Références

a) J. Li, X. Zhou, J. Li, L. Che, J. Yao, G. McHale, M. K. Chaudhury, Z. Wang, Sci. Adv. 2017, 3, eaao3530;
b) Y. Si, T. Wang, C. Li, C. Yu, N. Li, C. Gao, Z. Dong, L. Jiang, ACS Nano 2018, 12, 9214;
c) C. Rascon, A. O. Parry, D. Aarts, Proc. Natl. Acad. Sci. USA 2016, 113, 12633.
a) H. A. Stone, A. D. Stroock, A. Ajdari, Annu. Rev. Fluid Mech. 2004, 36, 381;
b) R. Seemann, M. Brinkmann, T. Pfohl, S. Herminghaus, Rep. Prog. Phys. 2011, 75, 016601;
c) S. Xing, R. S. Harake, T. Pan, Lab Chip 2011, 11, 3642;
d) A. Ghosh, R. Ganguly, T. M. Schutzius, C. M. Megaridis, Lab Chip 2014, 14, 1538.
a) H. Chen, T. Ran, Y. Gan, J. Zhou, Y. Zhang, L. Zhang, D. Zhang, L. Jiang, Nat. Mater. 2018, 17, 935;
b) H. Chen, P. Zhang, L. Zhang, H. Liu, Y. Jiang, D. Zhang, Z. Han, L. Jiang, Nature 2016, 532, 85;
c) J. Ju, H. Bai, Y. Zheng, T. Zhao, R. Fang, L. Jiang, Nat. Commun. 2012, 3, 1247;
d) J. Jiang, J. Gao, H. Zhang, W. He, J. Zhang, D. Daniel, X. Yao, Proc. Natl. Acad. Sci. USA 2019, 116, 2482;
e) M. Prakash, D. Quéré, J. W. M. Bush, Science 2008, 320, 931;
f) Z. Guo, D. Boylan, L. Shan, X. Dai, Proc. Natl. Acad. Sci. USA 2022, 119, e2209662119;
g) Z. Guo, L. Zhang, D. Monga, H. A. Stone, X. Dai, Cell Rep. Phys. Sci. 2021, 2, 100387.
a) S. Amini, S. Kolle, L. Petrone, O. Ahanotu, S. Sunny, C. N. Sutanto, S. Hoon, L. Cohen, J. C. Weaver, J. Aizenberg, Science 2017, 357, 668;
b) J.-a. Lv, Y. Liu, J. Wei, E. Chen, L. Qin, Y. Yu, Nature 2016, 537, 179;
c) F. Wang, M. Liu, C. Liu, Q. Zhao, T. Wang, Z. Wang, X. Du, Sci. Adv. 2022, 8, eabp9369;
d) W. Miao, S. Zheng, J. Zhou, B. Zhang, R. Fang, D. Hao, L. Sun, D. Wang, Z. Zhu, X. Jin, Y. Tian, L. Jiang, Adv. Mater. 2021, 33, 2007152;
e) G. Xie, P. Li, P. Y. Kim, P. Y. Gu, B. A. Helms, P. D. Ashby, L. Jiang, T. P. Russell, Nat. Chem. 2022, 14, 208.
J. Wang, Z. Zheng, H. Li, W. Huck, H. Sirringhaus, Nat. Mater. 2004, 3, 171.
a) K.-C. Park, P. Kim, A. Grinthal, N. He, D. Fox, J. C. Weaver, J. Aizenberg, Nature 2016, 531, 78;
b) T. Mouterde, G. Lehoucq, S. Xavier, A. Checco, C. T. Black, A. Rahman, T. Midavaine, C. Clanet, D. Quéré, Nat. Mater. 2017, 16, 658;
c) Q. Wang, X. Yao, H. Liu, D. Quéré, L. Jiang, Proc. Natl. Acad. Sci. USA 2015, 112, 9247;
d) S. Daniel, M. K. Chaudhury, J. C. Chen, Science 2001, 291, 633;
e) I. Haechler, N. Ferru, G. Schnoering, E. Mitridis, T. M. Schutzius, D. Poulikakos, Nat. Nanotechnol. 2023, 18, 137.
a) H. Li, W. Fang, Y. Li, Q. Yang, M. Li, Q. Li, X. Q. Feng, Y. Song, Nat. Commun. 2019, 10, 950;
b) M. S. Sadullah, G. Launay, J. Parle, R. Ledesma-Aguilar, Y. Gizaw, G. McHale, G. G. Wells, H. Kusumaatmaja, Commun. Phys. 2020, 3, 166;
c) P. Renvoisé, J. W. M. Bush, M. Prakash, D. Quéré, Europhys. Lett. 2009, 86, 64003;
d) N. A. Dudukovic, E. J. Fong, H. B. Gemeda, J. R. Deotte, M. R. Cerón, B. D. Moran, J. T. Davis, S. E. Baker, E. B. Duoss, Nature 2021, 595, 58;
e) H. Yasuga, E. Iseri, X. Wei, K. Kaya, G. Di Dio, T. Osaki, K. Kamiya, P. Nikolakopoulou, S. Buchmann, J. Sundin, S. Bagheri, S. Takeuchi, A. Herland, N. Miki, W. Van Der Wijngaart, Nat. Phys. 2021, 17, 794;
f) K. Li, J. Ju, Z. Xue, J. Ma, L. Feng, S. Gao, L. Jiang, Nat. Commun. 2013, 4, 2276;
g) J. Li, Q. H. Qin, A. Shah, R. H. A. Ras, X. Tian, V. Jokinen, Sci. Adv. 2016, 2, e1600148.
a) L. Zhang, Z. Guo, J. Sarma, W. Zhao, X. Dai, Adv. Funct. Mater. 2021, 31, 2008614;
b) J. Wu, R. Ma, Z. Wang, S. Yao, Appl. Phys. Lett. 2011, 98, 204104;
c) Q. Liu, J. Zhang, P. Sun, J. Wang, W. Zhao, G. Zhao, N. Chen, Y. Yang, L. Li, N. He, Z. Wang, X. Hao, J. Mater. Chem. A 2023, 11, 10164;
d) Z. Liu, H. Liu, W. Li, J. Song, Chem. Eng. J. 2022, 433, 134568;
e) Y. Jin, X. Liu, W. Xu, P. Sun, S. Huang, S. Yang, X. Yang, Q. Wang, R. H. W. Lam, R. Li, Z. Wang, ACS Nano 2023, 17, 10713.
a) K. Li, H. Li, D. Guo, X. Zhan, A. Li, Z. Cai, Z. Li, Z. Qu, L. Xue, M. Li, Y. Song, ACS Nano 2022, 16, 14838;
b) L. Li, X. Yu, Z. Lin, Z. Cai, Y. Cao, W. Kong, Z. Xiang, Z. Gu, X. Xing, X. Duan, Y. Song, Adv. Mater. 2022, 34, 2207392;
c) D. L. Hu, J. W. M. Bush, Nature 2005, 437, 733.
a) M. K. Chaudhury, G. M. Whitesides, Science 1992, 256, 1539;
b) K.-H. Chu, R. Xiao, E. N. Wang, Nat. Mater. 2010, 9, 413;
c) Z. Zhao, H. Li, Q. Liu, A. Li, L. Xue, R. Yuan, X. Yu, R. Li, X. Deng, Y. Song, Droplet 2023, 2, e52;
d) Y. Jin, C. Wu, P. Sun, M. Wang, M. Cui, C. Zhang, Z. Wang, Droplet 2022, 1, 92;
e) J. Xu, S. Xiu, Z. Lian, H. Yu, J. Cao, Droplet 2022, 1, 11.
a) T. L. Liu, C.-J. C. Kim, Science 2014, 346, 1096;
b) A. Tuteja, W. Choi, M. Ma, J. M. Mabry, S. A. Mazzella, G. C. Rutledge, G. H. McKinley, R. E. Cohen, Science 2007, 318, 1618;
c) X. Deng, L. Mammen, H.-J. Butt, D. Vollmer, Science 2012, 335, 67;
d) D. Wang, Q. Sun, M. J. Hokkanen, C. Zhang, F. Y. Lin, Q. Liu, S. P. Zhu, T. Zhou, Q. Chang, B. He, Q. Zhou, L. Chen, Z. Wang, R. H. A. Ras, X. Deng, Nature 2020, 582, 55;
e) P. Sun, Y. Jin, Y. Yin, C. Wu, C. Song, Y. Feng, P. Zhou, X. Qin, Y. Niu, Q. Liu, J. Zhang, Z. Wang, X. Hao, Small Methods 2023, 2201602.
a) T. S. Wong, S. H. Kang, S. K. Tang, E. J. Smythe, B. D. Hatton, A. Grinthal, J. Aizenberg, Nature 2011, 477, 443;
b) A. Lafuma, D. Quéré, Europhys. Lett. 2011, 96, 56001;
c) L. Chen, S. Huang, R. H. A. Ras, X. Tian, Nat. Rev. Chem. 2023, 7, 123.
a) A. Tuteja, W. Choi, J. M. Mabry, G. H. McKinley, R. E. Cohen, Proc. Natl. Acad. Sci. USA 2008, 105, 18200;
b) P. Papadopoulos, L. Mammen, X. Deng, D. Vollmer, H. J. Butt, Proc. Natl. Acad. Sci. USA 2013, 110, 3254;
c) P. Lv, Y. Xue, H. Liu, Y. Shi, P. Xi, H. Lin, H. Duan, Langmuir 2015, 31, 1248;
d) Y. Li, D. Quéré, C. Lv, Q. Zheng, Proc. Natl. Acad. Sci. USA 2017, 114, 3387.
a) M. J. Kreder, D. Daniel, A. Tetreault, Z. Cao, B. Lemaire, J. V. I. Timonen, J. Aizenberg, Phys. Rev. X 2018, 8, 031053;
b) D. Daniel, J. V. I. Timonen, R. Li, S. J. Velling, J. Aizenberg, Nat. Phys. 2017, 13, 1020;
c) F. Schellenberger, J. Xie, N. Encinas, A. Hardy, M. Klapper, P. Papadopoulos, H. J. Butt, D. Vollmer, Soft Matter 2015, 11, 7617;
d) L. Chen, E. Bonaccurso, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 2014, 90, 022401.
a) N. Gao, F. Geyer, D. W. Pilat, S. Wooh, D. Vollmer, H.-J. Butt, R. Berger, Nat. Phys. 2017, 14, 191;
b) H. K. Khattak, S. Karpitschka, J. H. Snoeijer, K. Dalnoki-Veress, Nat. Commun. 2022, 13, 4436;
c) D. W. Pilat, P. Papadopoulos, D. Schaffel, D. Vollmer, R. Berger, H. J. Butt, Langmuir 2012, 28, 16812.
L. Zhang, L. Chen, L. Xu, H. Zhao, R. Wen, F. Xia, Adv. Mater. 2023, 35, 2212149.
a) M. Villegas, Y. Zhang, N. Abu Jarad, L. Soleymani, T. F. Didar, ACS Nano 2019, 13, 8517;
b) J. D. Smith, R. Dhiman, S. Anand, E. Reza-Garduno, R. E. Cohen, G. H. McKinley, K. K. Varanasi, Soft Matter 2013, 9, 1772.
S. C. Singh, M. Elkabbash, Z. Li, X. Li, B. Regmi, M. Madsen, S. A. Jalil, Z. Zhan, J. Zhang, C. Guo, Nat. Sustainability 2020, 3, 938.
X. Li, J. Yang, K. Lv, P. Papadopoulos, J. Sun, D. Wang, Y. Zhao, L. Chen, D. Wang, Z. Wang, X. Deng, Natl. Sci. Rev. 2021, 8, nwaa153.
a) Y. Li, Z. Cui, G. Li, H. Bai, R. Dai, Y. Zhou, Y. Jiao, Y. Song, Y. Yang, S. Liu, M. Cao, Adv. Funct. Mater. 2022, 32, 2201035;
b) S. Feng, P. Zhu, H. Zheng, H. Zhan, C. Chen, J. Li, L. Wang, X. Yao, Y. Liu, Z. Wang, Science 2021, 373, 1344;
c) S. Feng, J. Delannoy, A. Malod, H. Zheng, D. Quéré, Z. Wang, Sci. Adv. 2020, 6, eabb4540;
d) S. Feng, Q. Wang, Y. Xing, Y. Hou, Y. Zheng, Adv. Mater. Interfaces 2020, 7, 2000081.
a) W. Shang, S. Deng, S. Feng, Y. Xing, Y. Hou, Y. Zheng, RSC Adv. 2017, 7, 7885;
b) O. Bliznyuk, H. P. Jansen, E. S. Kooij, H. J. Zandvliet, B. Poelsema, Langmuir 2011, 27, 11238.

Auteurs

Pengcheng Sun (P)

Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, P. R. China.

Xiuqing Hao (X)

Department of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, 210000, P. R. China.

Yuankai Jin (Y)

Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, P. R. China.

Yingying Yin (Y)

Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, P. R. China.

Chenyang Wu (C)

Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, P. R. China.

Jie Zhang (J)

Department of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, 210000, P. R. China.

Lujia Gao (L)

Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, P. R. China.

Steven Wang (S)

Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, P. R. China.

Zuankai Wang (Z)

Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, P. R. China.

Classifications MeSH