UV radiation sensitivity of bacteriophage PhiX174 - A potential surrogate for SARS-CoV-2 in terms of radiation inactivation.
Far-UVC
PhiX174
SARS-CoV-2 surrogate
UVA
UVB
UVC
radiation disinfection
ultraviolet radiation
Journal
AIMS microbiology
ISSN: 2471-1888
Titre abrégé: AIMS Microbiol
Pays: United States
ID NLM: 101697141
Informations de publication
Date de publication:
2023
2023
Historique:
received:
17
03
2023
revised:
16
04
2023
accepted:
24
04
2023
medline:
31
8
2023
pubmed:
31
8
2023
entrez:
31
8
2023
Statut:
epublish
Résumé
To minimize health risks, surrogates are often employed to reduce experiments with pathogenic microorganisms and the associated health risk. Due to structural similarities between the enveloped RNA-viruses SARS-CoV-2 and Phi6, the latter has been established as a nonpathogenic coronavirus surrogate for many applications. However, large discrepancies in the UV log-reduction doses between SARS-CoV-2 and Phi6 necessitate the search for a better surrogate for UV inactivation applications. A literature study provided the bacteriophage PhiX174 as a potentially more suitable nonpathogenic coronavirus surrogate candidate. In irradiation experiments, the sensitivity of PhiX174 was investigated upon exposure to UV radiation of wavelengths 222 nm (Far-UVC), 254 nm (UVC), 302 nm (broad-band UVB), 311 nm (narrow-band UVB) and 366 nm (UVA) using a plaque assay. The determined log-reduction doses for PhiX174 were 1.3 mJ/cm
Identifiants
pubmed: 37649795
doi: 10.3934/microbiol.2023023
pii: microbiol-09-03-023
pmc: PMC10462461
doi:
Types de publication
Journal Article
Langues
eng
Pagination
431-443Informations de copyright
© 2023 the Author(s), licensee AIMS Press.
Déclaration de conflit d'intérêts
Conflict of interest: The authors declare no conflict of interest.
Références
Microbiol Spectr. 2021 Oct 31;9(2):e0053721
pubmed: 34668746
Photochem Photobiol. 2022 Sep;98(5):1167-1171
pubmed: 35104367
Environ Sci Technol. 2017 Aug 1;51(15):8692-8700
pubmed: 28657725
Environ Sci Technol Lett. 2020 May 28;7(8):544-553
pubmed: 37566367
Science. 2004 Apr 30;304(5671):659-61
pubmed: 15118129
Appl Environ Microbiol. 2018 May 31;84(12):
pubmed: 29625986
BMC Res Notes. 2021 May 17;14(1):187
pubmed: 34001258
Virology. 1972 Aug;49(2):368-78
pubmed: 4626463
Pathog Immun. 2020 May 22;5(1):133-142
pubmed: 32582873
Viruses. 2012 Jul;4(7):1034-74
pubmed: 22852040
Photochem Photobiol. 2021 May;97(3):517-523
pubmed: 33465817
Chemosphere. 2015 Oct;136:118-24
pubmed: 25966330
Photochem Photobiol. 1991 Sep;54(3):489-93
pubmed: 1664526
Lancet Microbe. 2020 May;1(1):e8-e9
pubmed: 32835321
Environ Sci Technol. 2016 May 17;50(10):5077-85
pubmed: 27111122
Photochem Photobiol. 2021 May;97(3):527-531
pubmed: 33471372
Water Res. 2001 Sep;35(13):3109-16
pubmed: 11487107
Appl Environ Microbiol. 2021 Oct 28;87(22):e0153221
pubmed: 34495736
J Appl Microbiol. 2015 May;118(5):1210-6
pubmed: 25693048
Br J Dermatol. 2021 Jun;184(6):1197-1199
pubmed: 33452809
Sci Rep. 2022 Feb 16;12(1):2587
pubmed: 35173210
Water Res. 2014 May 15;55:143-9
pubmed: 24607520
Photochem Photobiol. 2002 Oct;76(4):406-10
pubmed: 12405148
AIMS Microbiol. 2022 Jul 8;8(3):278-291
pubmed: 36317004
GMS Hyg Infect Control. 2020 May 14;15:Doc08
pubmed: 32547908
J Mol Biol. 1964 Apr;8:614-5
pubmed: 14153533
Sci Rep. 2020 Jun 24;10(1):10285
pubmed: 32581288
J Air Waste Manag Assoc. 2023 Mar;73(3):200-211
pubmed: 36594726
J Virol Methods. 2014 Feb;196:86-92
pubmed: 24211298
Appl Environ Microbiol. 2020 Aug 18;86(17):
pubmed: 32591388
Water Res. 2016 Oct 15;103:141-148
pubmed: 27450352
Water Res. 2011 Jun;45(12):3723-34
pubmed: 21600626
Biophys J. 1960 Sep;1:29-41
pubmed: 13750383
Photochem Photobiol. 2023 Jan;99(1):168-175
pubmed: 35614842
Z Vererbungsl. 1964 Dec 30;95:318-25
pubmed: 14315522