Climate variability hypothesis is partially supported in thermal limits of juvenile Northwest Atlantic coastal fishes.
CTmax
CTmin
US Atlantic coast
biogeography
climate change
climate variability hypothesis
temperature tolerance
thermal range
Journal
Journal of fish biology
ISSN: 1095-8649
Titre abrégé: J Fish Biol
Pays: England
ID NLM: 0214055
Informations de publication
Date de publication:
31 Aug 2023
31 Aug 2023
Historique:
revised:
10
08
2023
received:
22
05
2023
accepted:
21
08
2023
pubmed:
31
8
2023
medline:
31
8
2023
entrez:
31
8
2023
Statut:
aheadofprint
Résumé
As ocean warming continues to impact marine species globally, there is a need to understand the mechanisms underlying shifts in abundance and distribution. There is growing evidence that upper and lower temperature tolerances rather than mean preferences explain range shifts, but the full thermal niche is unknown for many marine species and observational data are often ill-suited to estimate the upper and lower thermal tolerances. We quantified critical thermal maximum (CT
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : National Science Foundation
ID : 1851898
Informations de copyright
© 2023 Fisheries Society of the British Isles.
Références
Anderson, R. P., Lew, D., & Peterson, A. T. (2003). Evaluating predictive models of species' distributions: Criteria for selecting optimal models. Ecological Modelling, 162, 211-232.
Barker, B. D., Horodysky, A. Z., & Kerstetter, D. W. (2018). Hot or not? Comparative behavioral thermoregulation, critical temperature regimes, and thermal tolerances of the invasive lionfish Pterois sp. Versus native western North Atlantic reef fishes. Biological Invasions, 20, 45-58.
Barneche, D. R., Kulbicki, M., Floeter, S. R., Friedlander, A. M., Maina, J., & Allen, A. P. (2014). Scaling metabolism from individuals to reef-fish communities at broad spatial scales. Ecology Letters, 17(9), 1067-1076.
Becker, C. D., & Genoway, R. G. (1979). Evaluation of the critical thermal maximum for determining thermal tolerance of freshwater fish. Environmental Biology of Fishes, 4, 245-256.
Beers, J. M., Jayasundara, N., Podrabsky, J. E., Stillman, J. H., & Tomanek, L. (2015). Antarctic notothenioid fish: What are the future consequences of ‘losses’ and ‘gains’ acquired during long-term evolution at cold and stable temperatures? Journal of Experimental Biology, 218(12), 1834-1845.
Brett, J. R. (1956). Some principles in the thermal requirements of fishes. The Quarterly Review of Biology, 31(2), 75-87.
Brett, J. R. (1970). Temperature: Fishes. In Marine Ecology. Wiley.
Briggs, J. C., & Bowen, B. W. (2012). A realignment of marine biogeographic provinces with particular reference to fish distributions. Journal of Biogeography, 39(1), 12-30.
Briggs, J. C. (1974). Operation of zoogeographic barriers. Systematic Biology, 23(2), 248-256.
Burt, J. A., Feary, D. A., Bauman, A. G., Usseglio, P., Cavalcante, G. H., & Sale, P. F. (2011). Biogeographic patterns of reef fish community structure in the northeastern Arabian Peninsula. ICES Journal of Marine Science, 68, 1875-1883.
Carozza, D. A., Bianchi, D., & Galbraith, E. D. (2019). Metabolic impacts of climate change on marine ecosystems: Implications for fish communities and fisheries. Global Ecology and Biogeography, 28(2), 158-169.
Chaudhary, C., Richardson, A. J., Schoeman, D. S., & Costello, M. J. (2021). Global warming is causing a more pronounced dip in marine species richness around the equator. Proceedings of the National Academy of Sciences, 118, e2015094118.
Claireaux, G., & Lefrançois, C. (2007). Linking environmental variability and fish performance: Integration through the concept of scope for activity. Philosophical Transactions of the Royal Society B: Biological Sciences, 362(1487), 2031-2041.
Cohen, J. E. (1994). Marine and continental food webs: Three paradoxes? Philosophical Transactions of the Royal Society of London B, 343, 57-69.
Cox, D. K., Gibbons, J. W., & Sharitz, R. R. E. (1974). Effects of three heating rates on the critical thermal maximum of bluegill. The Journal of Animal Ecology, 44, 926.
Dahlke, F. T., Wohlrab, S., Butzin, M., & Pörtner, H. O. (2020). Thermal bottlenecks in the life cycle define climate vulnerability of fish. Science, 369(6499), 65-70.
Dobzhansky, T. (1950). Evolution in the tropics. American Scientist, 38, 209-221.
Durant, J. M., Hjermann, D. Ø., Ottersen, G., & Stenseth, N. C. (2007). Climate and the match or mismatch between predator requirements and resource availability. Climate Research, 33(3), 271-283.
Floeter, S. R., Rocha, L. A., Robertson, D. R., Joyeux, J. C., Smith-Vaniz, W. F., Wirtz, P., Edwards, A. J., Barreiros, J. P., Ferreira, C. E. L., Gasparini, J. L., & Brito, A. (2008). Atlantic reef fish biogeography and evolution. Journal of Biogeography, 35(1), 22-47.
Fredston, A., Pinsky, M., Selden, R. L., Szuwalski, C., Thorson, J. T., Gaines, S. D., & Halpern, B. S. (2021). Range edges of north American marine species are tracking temperature over decades. Global Change Biology, 27(13), 3145-3156.
Fry, F. E. J. (1971). The effect of environmental factors on the physiology of fish. In W. S. Hoar & D. J. Randall (Eds.), Fish physiology (pp. 1-98). Academic Press.
Goode, G. B., & Bean, T. H. (1879). Description of a species of Lycodes (L. paxcillus) obtained by the United States fish commission. Proceedings of the United States National Museum, 2, 44-46.
Guthery, F. S., Burnham, K. P., & Anderson, D. R. (2003). Model selection and multimodel inference: A practical information-theoretic approach. The Journal of Wildlife Management, 67(3), 655.
Gutiérrez-Pesquera, L. M., Tejedo, M., Olalla-Tárraga, M. A., Duarte, H., Nicieza, A., & Solé, M. (2016). Testing the climate variability hypothesis in thermal tolerance limits of tropical and temperate tadpoles. Journal of Biogeography, 43(6), 1166-1178.
Harris, R. M. B., Beaumont, L. J., Vance, T. R., Tozer, C. R., Remenyi, T. A., Perkins Kirkpatrick, S. E., Mitchell, P. J., Nicotra, A. B., McGregor, S., Andrew, N. R., Letnic, M., Kearney, M. R., Wernberg, T., Hutley, L. B., Chambers, L. E., Fletcher, M. S., Keatley, M. R., Woodward, C. A., Williamson, G., … Bowman, D. M. J. S. (2018). Biological responses to the press and pulse of climate trends and extreme events. Nature Climate Change, 8(7), 579-587.
Hasnain, S. S., Escobar, M. D., & Shuter, B. J. (2018). Estimating thermal response metrics for North American freshwater fish using Bayesian phylogenetic regression. Canadian Journal of Fisheries and Aquatic Sciences, 75(11), 1878-1885.
Howell, D. C., Rogier, M., Yzerbyt, V., & Bestgen, Y. (1998). Statistical methods in human sciences (p. 721). Wadsworth.
Kaschner, K., Kesner-Reyes, K., Garilao, C., Segschneider, J., Rius-Barile, J., Rees, T., & Froese, R. (2019). AquaMaps: Predicted range maps for aquatic species. https://www.aquamaps.org
Laing, A., & Evans, J. L. (2010). Introduction to Tropical Meteorology: A Comprehensive Online & Print Textbook. Version 2a. COMET Program, University Corporation for Atmospheric Research. https://www.Meted.Ucar.Edu/tropical/textbook_2nd_edition. Reviewed: March, 15, 2020.
Lynch, H. J., Rhainds, M., Calabrese, J. M., Cantrell, S., Cosner, C., & Fagan, W. F. (2014). How climate extremes-not means-define a species' geographic range boundary via a demographic tipping point. Ecological Monographs, 84, 131-149.
Mills, K. E., Pershing, A. J., Brown, C. J., Chen, Y., Chiang, F.-S., Holland, D. S., Lehuta, S., Nye, J. A., Sun, J. C., & Thomas, A. C. (2013). Fisheries management in a changing climate lessons from the 2012 ocean heat wave in the Northwest Atlantic. Oceanography, 26, 191-195.
Mora, C., & Maya, M. F. (2006). Effect of the rate of temperature increase of the dynamic method on the heat tolerance of fishes. Journal of Thermal Biology, 31, 337-341.
Morgan, R., Finnøen, M. H., & Jutfelt, F. (2018). CTmax is repeatable and doesn't reduce growth in zebrafish. Scientific Reports, 8(1), 1-8.
Morley, J. W., Batt, R. D., & Pinsky, M. L. (2017). Marine assemblages respond rapidly to winter climate variability. Global Change Biology, 23, 2590-2601.
Moyano, M., Candebat, C., Ruhbaum, Y., Alvarez-Fernandez, S., Claireaux, G., Zambonino-Infante, J. L., & Peck, M. A. (2017). Effects of warming rate, acclimation temperature and ontogeny on the critical thermal maximum of temperate marine fish larvae. PLoS One, 12(7), e0179928.
Munday, P. L., Jones, G. P., Pratchett, M. S., & Williams, A. J. (2008). Climate change and the future for coral reef fishes. Fish and Fisheries, 9, 261-285.
Nye, J. A., Link, J. S., Hare, J. A., & Overholtz, W. J. (2009). Changing spatial distribution of fish stocks in relation to climate and population size on the Northeast United States continental shelf. Marine Ecology Progress Series, 393, 111-129.
Ospina, A. F., & Mora, C. (2004). Effect of body size on reef fish tolerance to extreme low and high temperatures. Environmental Biology of Fishes, 70(4), 339-343.
Pecl, G. T., Araújo, M. B., Bell, J. D., Blanchard, J., Bonebrake, T. C., Chen, I. C., Clark, T. D., Colwell, R. K., Danielsen, F., Evengård, B., & Falconi, L. (2017). Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science, 355(6332), eaai9214.
Perry, A. L., Low, P. J., Ellis, J. R., & Reynolds, J. D. (2005). Climate change and distribution shifts in marine fishes. Science, 308(5730), 1912-1915.
Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3-4), 231-259.
Pinsky, M. L., Worm, B., Fogarty, M. J., Sarmiento, J. L., & Levin, S. A. (2013). Marine taxa track local climate velocities. Science, 341(6151), 1239-1242.
Pintor, A. F., Schwarzkopf, L., & Krockenberger, A. K. (2015). Rapoport's rule: Do climatic variability gradients shape range extent? Ecological Monographs, 85(4), 643-659.
Poloczanska, E. S., Brown, C. J., Sydeman, W. J., Kiessling, W., Schoeman, D. S., Moore, P. J., Brander, K., Bruno, J. F., Buckley, L. B., Burrows, M. T., & Duarte, C. M. (2013). Global imprint of climate change on marine life. Nature Climate Change, 3(10), 919-925.
Pörtner, H. O., Bock, C., Knust, R., Lannig, G., Lucassen, M., Mark, F. C., & Sartoris, F. J. (2008). Cod and climate in a latitudinal cline: Physiological analyses of climate effects in marine fishes. Climate Research, 37(2-3), 253-270.
Pörtner, H. O., & Peck, M. A. (2010). Climate change effects on fishes and fisheries: Towards a cause-and-effect understanding. Journal of Fish Biology, 77(8), 1745-1779.
Rapoport, E. H. (1975). Areografia: estrategias geograficas de las especies. Fondo de Cultura Econ6-mica 1982. Areography: Geographical strategies of species. 1st English ed. B. Drausal, transl. Publ.Fundaci6n Bariloche. Vol. 1. Pergamon, New York.
Ready, J., Kaschner, K., South, A. B., Eastwood, P. D., Rees, T., Rius, J., Agbayani, E., Kullander, S., & Froese, R. (2010). Predicting the distributions of marine organisms at the global scale. Ecological Modelling, 221, 467-478.
Rummer, J. L., & Munday, P. L. (2017). Climate change and the evolution of reef fishes: Past and future. Fish and Fisheries, 18, 22-39.
Rutherford, S., D'Hondt, S., & Prell, W. (1999). Environmental controls on the geographic distribution of zooplankton diversity. Nature, 400(6746), 749-753.
Savidge, D. K., & Austin, J. A. (2007). The Hatteras front: August 2004 velocity and density structure. Journal of Geophysical Research: Oceans, 112(C7).
Shah, A. A., Gill, B. A., Encalada, A. C., Flecker, A. S., Funk, W. C., Guayasamin, J. M., Kondratieff, B. C., Poff, N. L. R., Thomas, S. A., Zamudio, K. R., & Ghalambor, C. K. (2017). Climate variability predicts thermal limits of aquatic insects across elevation and latitude. Functional Ecology, 31(11), 2118-2127.
Stevens, G. C. (1989). The latitudinal gradient in geographical range: How so many species coexist in the tropics. The American Naturalist, 133(2), 240-256.
Stock, C. A., John, J. G., Rykaczewski, R. R., Asch, R. G., Cheung, W. W. L., Dunne, J. P., Friedland, K. D., Lam, V. W. Y., Sarmiento, J. L., & Watson, R. A. (2017). Reconciling fisheries catch and ocean productivity. Proceedings of the National Academy of Sciences, 114, E1441-E1449.
Sunday, J. M., Bates, A. E., & Dulvy, N. K. (2011). Global analysis of thermal tolerance and latitude in ectotherms. Proceedings of the Royal Society B: Biological Sciences, 278(1713), 1823-1830.
Zhang, Y., & Kieffer, J. D. (2014). Critical thermal maximum (CTmax) and hematology of shortnose sturgeons (Acipenser brevirostrum) acclimated to three temperatures. Canadian Journal of Zoology, 92, 215-221.