Uncovering Molecular Quencher Effects on FRET Phenomena in Microsphere-Immobilized Probe Systems.


Journal

Analytical chemistry
ISSN: 1520-6882
Titre abrégé: Anal Chem
Pays: United States
ID NLM: 0370536

Informations de publication

Date de publication:
19 09 2023
Historique:
medline: 20 9 2023
pubmed: 31 8 2023
entrez: 31 8 2023
Statut: ppublish

Résumé

Double-stranded (ds) oligonucleotide probes composed of quencher-dye sequence pairs outperform analogous single-stranded (ss) probes due to their superior target sequence specificity without any prerequisite target labeling. Optimizing sequence combinations for dsprobe design requires promoting a fast, accurate response to a specific target sequence while minimizing spontaneous dsprobe dissociation events. Here, flow cytometry is used to rapidly interrogate the stability and selective responsiveness of 20 candidate LNA and DNA dsprobes to a 24 base-long segment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA and ∼243 degenerate RNA sequences serving as model variants. Importantly, in contrast to quantifying binding events of dye-labeled targets via flow cytometry, the current work employs the Förster resonance energy transfer (FRET)-based detection of unlabeled RNA targets. One DNA dsprobe with a 15-base-long hybridization partner containing a central abasic site emerged as very stable yet responsive only to the SARS-CoV-2 RNA segment. Separate displacement experiments, however, indicated that ∼12% of these quencher-capped hybridization partners remain bound, even in the presence of an excess SARS-CoV-2 RNA target. To examine their quenching range, additional titration studies varied the ratios and spatial placement of nonquencher and quencher-capped hybridization partners in the dsprobes. These titration studies indicate that these residual, bound quencher-capped partners, even at low percentages, act as nodes, enabling both static quenching effects within each residual dsprobe as well as longer-range quenching effects on neighboring FAM moieties. Overall, these studies provide insight into practical implications for rapid dsprobe screening and target detection by combining flow cytometry with FRET-based detection.

Identifiants

pubmed: 37651319
doi: 10.1021/acs.analchem.3c01064
pmc: PMC10515108
doi:

Substances chimiques

RNA, Viral 0

Types de publication

Journal Article Research Support, U.S. Gov't, Non-P.H.S. Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

13796-13803

Références

Anal Chem. 2020 Aug 4;92(15):10196-10209
pubmed: 32573207
Redox Biol. 2013 Oct 28;1:508-13
pubmed: 24251119
Langmuir. 2022 May 26;:
pubmed: 35617467
J Am Chem Soc. 2018 Sep 26;140(38):12069-12076
pubmed: 30204433
ACS Synth Biol. 2021 Nov 19;10(11):3066-3073
pubmed: 34752075
Biochimie. 2008 Jul;90(7):1026-39
pubmed: 18486626
ACS Appl Mater Interfaces. 2017 Mar 22;9(11):9462-9469
pubmed: 28248077
Analyst. 2019 Feb 21;144(4):1369-1378
pubmed: 30566146
J Am Chem Soc. 2005 Feb 16;127(6):1592-3
pubmed: 15700965
Anal Bioanal Chem. 2012 Jan;402(1):543-50
pubmed: 21898156
Anal Biochem. 1988 Jul;172(1):61-77
pubmed: 3189776
Analyst. 2014 Jun 7;139(11):2867-72
pubmed: 24736939
J Am Chem Soc. 2015 Jul 8;137(26):8340-3
pubmed: 26110466
J Am Chem Soc. 2015 Aug 26;137(33):10760-6
pubmed: 26192470
Chem Rev. 2019 May 22;119(10):6326-6369
pubmed: 30714375
Nucleic Acids Res. 2011 Aug;39(15):e99
pubmed: 21613238
Molecules. 2020 Oct 13;25(20):
pubmed: 33066073
Biophys J. 2000 Jun;78(6):3260-74
pubmed: 10828002
J Phys Chem B. 2017 Mar 30;121(12):2594-2602
pubmed: 28256835
Adv Healthc Mater. 2018 Apr;7(8):e1701189
pubmed: 29350489
Nat Biotechnol. 1996 Mar;14(3):303-8
pubmed: 9630890
Analyst. 2022 Feb 14;147(4):722-733
pubmed: 35084404
Appl Microbiol Biotechnol. 2022 Mar;106(5-6):2207-2218
pubmed: 35218386
Proc Natl Acad Sci U S A. 1988 Dec;85(23):8790-4
pubmed: 3194390
Nucleic Acids Res. 2002 May 1;30(9):2089-195
pubmed: 11972350
Nucleic Acids Res. 2002 Nov 1;30(21):e122
pubmed: 12409481
Appl Environ Microbiol. 2007 Jun;73(11):3645-55
pubmed: 17416693
Soft Matter. 2018 Feb 14;14(6):969-984
pubmed: 29323396
Biotechnol Adv. 2010 Mar-Apr;28(2):232-54
pubmed: 20006978
Nanoscale. 2013 Oct 21;5(20):9503-10
pubmed: 23982570
Annu Rev Anal Chem (Palo Alto Calif). 2022 Jun 13;15(1):17-36
pubmed: 35300526
ACS Nano. 2016 Feb 23;10(2):2392-8
pubmed: 26845414
Nat Commun. 2014 Nov 10;5:5324
pubmed: 25382214
Phys Rev Lett. 2005 Feb 11;94(5):058302
pubmed: 15783705
Langmuir. 2009 Oct 20;25(20):12283-92
pubmed: 19821628
Angew Chem Int Ed Engl. 2022 Jun 7;61(23):e202201929
pubmed: 35315568
Biophys J. 2004 Dec;87(6):4153-62
pubmed: 15377515
RSC Adv. 2022 Feb 16;12(9):5629-5637
pubmed: 35425544
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Aug;86(2 Pt 1):021901
pubmed: 23005779
Nat Chem. 2012 Jan 22;4(3):208-14
pubmed: 22354435
PLoS One. 2016 Mar 31;11(3):e0151204
pubmed: 27031831
J Am Chem Soc. 2013 Apr 17;135(15):5612-9
pubmed: 23548100
Anal Biochem. 1999 Dec 15;276(2):204-14
pubmed: 10603244
Nat Chem. 2011 Feb;3(2):103-13
pubmed: 21258382
J Phys Chem B. 2014 Oct 23;118(42):12130-9
pubmed: 25254491
Langmuir. 2007 Sep 11;23(19):9728-36
pubmed: 17696456
Biomacromolecules. 2013 Apr 8;14(4):986-92
pubmed: 23402211
Biochemistry. 2004 Oct 26;43(42):13233-41
pubmed: 15491130
Biomacromolecules. 2017 Apr 10;18(4):1086-1096
pubmed: 28233983
Analyst. 2005 Dec;130(12):1634-8
pubmed: 16284662
Anal Chem. 2021 Jun 8;93(22):7879-7888
pubmed: 34038093
Angew Chem Int Ed Engl. 2012 Jul 23;51(30):7426-30
pubmed: 22806948
Sci Rep. 2017 Jan 25;7:41392
pubmed: 28120891
ACS Sens. 2019 Apr 26;4(4):792-807
pubmed: 30843690
J Am Chem Soc. 2007 Dec 19;129(50):15477-9
pubmed: 18034495
Trends Analyt Chem. 2022 Oct;155:116585
pubmed: 35281332
Bioconjug Chem. 2022 May 18;33(5):788-794
pubmed: 35476400
J Am Chem Soc. 2020 Jul 1;142(26):11451-11463
pubmed: 32496760
Biochemistry. 2011 Nov 1;50(43):9352-67
pubmed: 21928795
Ann Biomed Eng. 2006 Jan;34(1):39-50
pubmed: 16463087
Nature. 2000 Aug 10;406(6796):605-8
pubmed: 10949296
Nucleic Acids Res. 2020 Mar 18;48(5):2220-2231
pubmed: 32020194
J Am Chem Soc. 2022 Feb 9;144(5):2149-2155
pubmed: 35098709
Anal Biochem. 2001 Mar 1;290(1):89-97
pubmed: 11180941
Annu Rev Biochem. 1978;47:819-46
pubmed: 354506
Science. 2015 Feb 6;347(6222):639-42
pubmed: 25657244
Methods Enzymol. 2012;505:383-99
pubmed: 22289464
Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7276-80
pubmed: 1871133
J Am Chem Soc. 2005 Sep 21;127(37):12772-3
pubmed: 16159250
Nat Biotechnol. 2001 Apr;19(4):365-70
pubmed: 11283596
Anal Chem. 2014 Feb 4;86(3):1853-63
pubmed: 24417738
J Biol Chem. 2020 Nov 13;295(46):15438-15453
pubmed: 32883809
Chem Soc Rev. 2021 Nov 29;50(23):13410-13440
pubmed: 34792047
J Am Chem Soc. 2011 Feb 23;133(7):2177-82
pubmed: 21268641

Auteurs

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH