Uncovering Molecular Quencher Effects on FRET Phenomena in Microsphere-Immobilized Probe Systems.
Journal
Analytical chemistry
ISSN: 1520-6882
Titre abrégé: Anal Chem
Pays: United States
ID NLM: 0370536
Informations de publication
Date de publication:
19 09 2023
19 09 2023
Historique:
medline:
20
9
2023
pubmed:
31
8
2023
entrez:
31
8
2023
Statut:
ppublish
Résumé
Double-stranded (ds) oligonucleotide probes composed of quencher-dye sequence pairs outperform analogous single-stranded (ss) probes due to their superior target sequence specificity without any prerequisite target labeling. Optimizing sequence combinations for dsprobe design requires promoting a fast, accurate response to a specific target sequence while minimizing spontaneous dsprobe dissociation events. Here, flow cytometry is used to rapidly interrogate the stability and selective responsiveness of 20 candidate LNA and DNA dsprobes to a 24 base-long segment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA and ∼243 degenerate RNA sequences serving as model variants. Importantly, in contrast to quantifying binding events of dye-labeled targets via flow cytometry, the current work employs the Förster resonance energy transfer (FRET)-based detection of unlabeled RNA targets. One DNA dsprobe with a 15-base-long hybridization partner containing a central abasic site emerged as very stable yet responsive only to the SARS-CoV-2 RNA segment. Separate displacement experiments, however, indicated that ∼12% of these quencher-capped hybridization partners remain bound, even in the presence of an excess SARS-CoV-2 RNA target. To examine their quenching range, additional titration studies varied the ratios and spatial placement of nonquencher and quencher-capped hybridization partners in the dsprobes. These titration studies indicate that these residual, bound quencher-capped partners, even at low percentages, act as nodes, enabling both static quenching effects within each residual dsprobe as well as longer-range quenching effects on neighboring FAM moieties. Overall, these studies provide insight into practical implications for rapid dsprobe screening and target detection by combining flow cytometry with FRET-based detection.
Identifiants
pubmed: 37651319
doi: 10.1021/acs.analchem.3c01064
pmc: PMC10515108
doi:
Substances chimiques
RNA, Viral
0
Types de publication
Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
13796-13803Références
Anal Chem. 2020 Aug 4;92(15):10196-10209
pubmed: 32573207
Redox Biol. 2013 Oct 28;1:508-13
pubmed: 24251119
Langmuir. 2022 May 26;:
pubmed: 35617467
J Am Chem Soc. 2018 Sep 26;140(38):12069-12076
pubmed: 30204433
ACS Synth Biol. 2021 Nov 19;10(11):3066-3073
pubmed: 34752075
Biochimie. 2008 Jul;90(7):1026-39
pubmed: 18486626
ACS Appl Mater Interfaces. 2017 Mar 22;9(11):9462-9469
pubmed: 28248077
Analyst. 2019 Feb 21;144(4):1369-1378
pubmed: 30566146
J Am Chem Soc. 2005 Feb 16;127(6):1592-3
pubmed: 15700965
Anal Bioanal Chem. 2012 Jan;402(1):543-50
pubmed: 21898156
Anal Biochem. 1988 Jul;172(1):61-77
pubmed: 3189776
Analyst. 2014 Jun 7;139(11):2867-72
pubmed: 24736939
J Am Chem Soc. 2015 Jul 8;137(26):8340-3
pubmed: 26110466
J Am Chem Soc. 2015 Aug 26;137(33):10760-6
pubmed: 26192470
Chem Rev. 2019 May 22;119(10):6326-6369
pubmed: 30714375
Nucleic Acids Res. 2011 Aug;39(15):e99
pubmed: 21613238
Molecules. 2020 Oct 13;25(20):
pubmed: 33066073
Biophys J. 2000 Jun;78(6):3260-74
pubmed: 10828002
J Phys Chem B. 2017 Mar 30;121(12):2594-2602
pubmed: 28256835
Adv Healthc Mater. 2018 Apr;7(8):e1701189
pubmed: 29350489
Nat Biotechnol. 1996 Mar;14(3):303-8
pubmed: 9630890
Analyst. 2022 Feb 14;147(4):722-733
pubmed: 35084404
Appl Microbiol Biotechnol. 2022 Mar;106(5-6):2207-2218
pubmed: 35218386
Proc Natl Acad Sci U S A. 1988 Dec;85(23):8790-4
pubmed: 3194390
Nucleic Acids Res. 2002 May 1;30(9):2089-195
pubmed: 11972350
Nucleic Acids Res. 2002 Nov 1;30(21):e122
pubmed: 12409481
Appl Environ Microbiol. 2007 Jun;73(11):3645-55
pubmed: 17416693
Soft Matter. 2018 Feb 14;14(6):969-984
pubmed: 29323396
Biotechnol Adv. 2010 Mar-Apr;28(2):232-54
pubmed: 20006978
Nanoscale. 2013 Oct 21;5(20):9503-10
pubmed: 23982570
Annu Rev Anal Chem (Palo Alto Calif). 2022 Jun 13;15(1):17-36
pubmed: 35300526
ACS Nano. 2016 Feb 23;10(2):2392-8
pubmed: 26845414
Nat Commun. 2014 Nov 10;5:5324
pubmed: 25382214
Phys Rev Lett. 2005 Feb 11;94(5):058302
pubmed: 15783705
Langmuir. 2009 Oct 20;25(20):12283-92
pubmed: 19821628
Angew Chem Int Ed Engl. 2022 Jun 7;61(23):e202201929
pubmed: 35315568
Biophys J. 2004 Dec;87(6):4153-62
pubmed: 15377515
RSC Adv. 2022 Feb 16;12(9):5629-5637
pubmed: 35425544
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Aug;86(2 Pt 1):021901
pubmed: 23005779
Nat Chem. 2012 Jan 22;4(3):208-14
pubmed: 22354435
PLoS One. 2016 Mar 31;11(3):e0151204
pubmed: 27031831
J Am Chem Soc. 2013 Apr 17;135(15):5612-9
pubmed: 23548100
Anal Biochem. 1999 Dec 15;276(2):204-14
pubmed: 10603244
Nat Chem. 2011 Feb;3(2):103-13
pubmed: 21258382
J Phys Chem B. 2014 Oct 23;118(42):12130-9
pubmed: 25254491
Langmuir. 2007 Sep 11;23(19):9728-36
pubmed: 17696456
Biomacromolecules. 2013 Apr 8;14(4):986-92
pubmed: 23402211
Biochemistry. 2004 Oct 26;43(42):13233-41
pubmed: 15491130
Biomacromolecules. 2017 Apr 10;18(4):1086-1096
pubmed: 28233983
Analyst. 2005 Dec;130(12):1634-8
pubmed: 16284662
Anal Chem. 2021 Jun 8;93(22):7879-7888
pubmed: 34038093
Angew Chem Int Ed Engl. 2012 Jul 23;51(30):7426-30
pubmed: 22806948
Sci Rep. 2017 Jan 25;7:41392
pubmed: 28120891
ACS Sens. 2019 Apr 26;4(4):792-807
pubmed: 30843690
J Am Chem Soc. 2007 Dec 19;129(50):15477-9
pubmed: 18034495
Trends Analyt Chem. 2022 Oct;155:116585
pubmed: 35281332
Bioconjug Chem. 2022 May 18;33(5):788-794
pubmed: 35476400
J Am Chem Soc. 2020 Jul 1;142(26):11451-11463
pubmed: 32496760
Biochemistry. 2011 Nov 1;50(43):9352-67
pubmed: 21928795
Ann Biomed Eng. 2006 Jan;34(1):39-50
pubmed: 16463087
Nature. 2000 Aug 10;406(6796):605-8
pubmed: 10949296
Nucleic Acids Res. 2020 Mar 18;48(5):2220-2231
pubmed: 32020194
J Am Chem Soc. 2022 Feb 9;144(5):2149-2155
pubmed: 35098709
Anal Biochem. 2001 Mar 1;290(1):89-97
pubmed: 11180941
Annu Rev Biochem. 1978;47:819-46
pubmed: 354506
Science. 2015 Feb 6;347(6222):639-42
pubmed: 25657244
Methods Enzymol. 2012;505:383-99
pubmed: 22289464
Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7276-80
pubmed: 1871133
J Am Chem Soc. 2005 Sep 21;127(37):12772-3
pubmed: 16159250
Nat Biotechnol. 2001 Apr;19(4):365-70
pubmed: 11283596
Anal Chem. 2014 Feb 4;86(3):1853-63
pubmed: 24417738
J Biol Chem. 2020 Nov 13;295(46):15438-15453
pubmed: 32883809
Chem Soc Rev. 2021 Nov 29;50(23):13410-13440
pubmed: 34792047
J Am Chem Soc. 2011 Feb 23;133(7):2177-82
pubmed: 21268641