Military-related mild traumatic brain injury: clinical characteristics, advanced neuroimaging, and molecular mechanisms.
Journal
Translational psychiatry
ISSN: 2158-3188
Titre abrégé: Transl Psychiatry
Pays: United States
ID NLM: 101562664
Informations de publication
Date de publication:
31 08 2023
31 08 2023
Historique:
received:
31
10
2022
accepted:
24
07
2023
revised:
18
07
2023
medline:
4
9
2023
pubmed:
1
9
2023
entrez:
31
8
2023
Statut:
epublish
Résumé
Mild traumatic brain injury (mTBI) is a significant health burden among military service members. Although mTBI was once considered relatively benign compared to more severe TBIs, a growing body of evidence has demonstrated the devastating neurological consequences of mTBI, including chronic post-concussion symptoms and deficits in cognition, memory, sleep, vision, and hearing. The discovery of reliable biomarkers for mTBI has been challenging due to under-reporting and heterogeneity of military-related mTBI, unpredictability of pathological changes, and delay of post-injury clinical evaluations. Moreover, compared to more severe TBI, mTBI is especially difficult to diagnose due to the lack of overt clinical neuroimaging findings. Yet, advanced neuroimaging techniques using magnetic resonance imaging (MRI) hold promise in detecting microstructural aberrations following mTBI. Using different pulse sequences, MRI enables the evaluation of different tissue characteristics without risks associated with ionizing radiation inherent to other imaging modalities, such as X-ray-based studies or computerized tomography (CT). Accordingly, considering the high morbidity of mTBI in military populations, debilitating post-injury symptoms, and lack of robust neuroimaging biomarkers, this review (1) summarizes the nature and mechanisms of mTBI in military settings, (2) describes clinical characteristics of military-related mTBI and associated comorbidities, such as post-traumatic stress disorder (PTSD), (3) highlights advanced neuroimaging techniques used to study mTBI and the molecular mechanisms that can be inferred, and (4) discusses emerging frontiers in advanced neuroimaging for mTBI. We encourage multi-modal approaches combining neuropsychiatric, blood-based, and genetic data as well as the discovery and employment of new imaging techniques with big data analytics that enable accurate detection of post-injury pathologic aberrations related to tissue microstructure, glymphatic function, and neurodegeneration. Ultimately, this review provides a foundational overview of military-related mTBI and advanced neuroimaging techniques that merit further study for mTBI diagnosis, prognosis, and treatment monitoring.
Identifiants
pubmed: 37652994
doi: 10.1038/s41398-023-02569-1
pii: 10.1038/s41398-023-02569-1
pmc: PMC10471788
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
289Informations de copyright
© 2023. Springer Nature Limited.
Références
Traumatic Brain Injury & Concussion. https://www.cdc.gov/traumaticbraininjury/get_the_facts.html , 2022, Accessed Date Accessed 2022 Accessed.
Traumatic Brain Injury. https://www.aans.org/Patients/Neurosurgical-Conditions-and-Treatments/Traumatic-Brain-Injury , 2020, Accessed Date Accessed 2020 Accessed.
DOD TBI Worldwide Numbers. https://health.mil/Military-Health-Topics/Centers-of-Excellence/Traumatic-Brain-Injury-Center-of-Excellence/DOD-TBI-Worldwide-Numbers , 2022, Accessed Date Accessed 2022 Accessed.
Statements Q. VA/DoD clinical practice guideline for management of concussion/mild traumatic brain injury. J Rehabil Res Dev. 2009;46:1–60.
Arciniegas DB, Anderson CA, Topkoff J, McAllister TW. Mild traumatic brain injury: a neuropsychiatric approach to diagnosis, evaluation, and treatment. Neuropsychiatr Dis Treat. 2005;1:311–27.
pubmed: 18568112
pmcid: 2424119
Taylor CA, Bell JM, Breiding MJ, Xu L. Traumatic brain injury–related emergency department visits, hospitalizations, and deaths—United States, 2007 and 2013. MMWR Surveill Summaries. 2017;66:1.
Salat DH, Robinson ME, Miller DR, Clark DC, McGlinchey RE. Neuroimaging of deployment-associated traumatic brain injury (TBI) with a focus on mild TBI (mTBI) since 2009. Brain Inj. 2017;31:1204–19.
pubmed: 28981347
pmcid: 9206728
Bhattrai A, Irimia A, Van Horn JD. Neuroimaging of traumatic brain injury in military personnel: an overview. J Clin Neurosci. 2019;70:1–10.
pubmed: 31331746
pmcid: 6861663
Kong L-Z, Zhang R-L, Hu S-H, Lai J-B. Military traumatic brain injury: a challenge straddling neurology and psychiatry. Mil Med Res. 2022;9:1–18.
Phipps H, Mondello S, Wilson A, Dittmer T, Rohde NN, Schroeder PJ, et al. Characteristics and impact of US military blast-related mild traumatic brain injury: a systematic review. Front Neurol. 2020;11:559318.
pubmed: 33224086
pmcid: 7667277
Lindberg MA, Martin EMM, Marion DW. Military Traumatic Brain Injury: The History, Impact, and Future. J Neurotrauma. 2022;39:1133–45.
pubmed: 35451333
pmcid: 9422790
Office DBIRPC. Prevention, Mitigation, and Treatment of Blast Injuries: FY15 Report to the Executive Agent. In: Defense Do (ed). 2006.
DePalma RG, Burris DG, Champion HR, Hodgson MJ. Blast injuries. N. Engl J Med. 2005;352:1335–42.
pubmed: 15800229
Leggieri Jr MJ DoD Brain Injury Computational Modeling Expert Panel: ARMY MEDICAL RESEARCH AND MATERIEL COMMAND FORT DETRICK MD; 2011.
Bell RS, Vo AH, Neal CJ, Tigno J, Roberts R, Mossop C, et al. Military traumatic brain and spinal column injury: a 5-year study of the impact blast and other military grade weaponry on the central nervous system. J Trauma Acute Care Surg. 2009;66:S104–S111.
Owens BD, Kragh JF Jr, Wenke JC, Macaitis J, Wade CE, Holcomb JB. Combat wounds in operation Iraqi Freedom and operation Enduring Freedom. J Trauma Acute Care Surg. 2008;64:295–9.
Snell FI, Halter MJ. A signature wound of war: mild traumatic brain injury. J Psychosoc Nurs Ment Health Serv. 2010;48:22–28.
pubmed: 20166653
Wallace D. Improvised explosive devices and traumatic brain injury: the military experience in Iraq and Afghanistan. Australas Psych. 2009;17:218–24.
Brenner LA, Vanderploeg RD, Terrio H. Assessment and diagnosis of mild traumatic brain injury, posttraumatic stress disorder, and other polytrauma conditions: burden of adversity hypothesis. Rehabilitation Psychol. 2009;54:239.
Jaffee CMS, Meyer KS. A brief overview of traumatic brain injury (TBI) and post-traumatic stress disorder (PTSD) within the Department of Defense. Clin Neuropsychologist. 2009;23:1291–8.
Lew HL, Otis JD, Tun C, Kerns RD, Clark ME, Cifu DX. Prevalence of chronic pain, posttraumatic stress disorder, and persistent postconcussive symptoms in OIF/OEF veterans: polytrauma clinical triad. J Rehabilitation Res Dev. 2009;46:697–702.
Alley MD, Schimizze BR, Son SF. Experimental modeling of explosive blast-related traumatic brain injuries. Neuroimage. 2011;54:S45–S54.
pubmed: 20580931
Chafi M, Karami G, Ziejewski M. Biomechanical assessment of brain dynamic responses due to blast pressure waves. Ann Biomed Eng. 2010;38:490–504.
pubmed: 19806456
Courtney MW, Courtney AC. Working toward exposure thresholds for blast-induced traumatic brain injury: thoracic and acceleration mechanisms. Neuroimage. 2011;54:S55–S61.
pubmed: 20483376
Desmoulin GT, Dionne J-P. Blast-induced neurotrauma: surrogate use, loading mechanisms, and cellular responses. J Trauma Acute Care Surg. 2009;67:1113–22.
Lockhart P, Cronin D, Williams K, Ouellet S. Investigation of head response to blast loading. J Trauma Acute Care Surg. 2011;70:E29–E36.
Taylor PA, Ford CC Simulation of blast-induced early-time intracranial wave physics leading to traumatic brain injury. 2009.
Iacono D, Murphy EK, Stimpson CD, Leonessa F, Perl DP. Double Blast Wave Primary Effect on Synaptic, Glymphatic, Myelin, Neuronal and Neurovascular Markers. Brain Sci. 2023;13:286.
pubmed: 36831830
pmcid: 9954059
Bauman RA, Ling G, Tong L, Januszkiewicz A, Agoston D, Delanerolle N, et al. An introductory characterization of a combat-casualty-care relevant swine model of closed head injury resulting from exposure to explosive blast. J Neurotrauma. 2009;26:841–60.
pubmed: 19215189
Korn A, Golan H, Melamed I, Pascual-Marqui R, Friedman A. Focal cortical dysfunction and blood–brain barrier disruption in patients with postconcussion syndrome. J Clin Neurophysiol. 2005;22:1–9.
pubmed: 15689708
Iwata A, Stys PK, Wolf JA, Chen X-H, Taylor AG, Meaney DF, et al. Traumatic axonal injury induces proteolytic cleavage of the voltage-gated sodium channels modulated by tetrodotoxin and protease inhibitors. J Neurosci. 2004;24:4605–13.
pubmed: 15140932
pmcid: 6729402
Giza CC, Hovda DA. The neurometabolic cascade of concussion. J Athl Train. 2001;36:228.
pubmed: 12937489
pmcid: 155411
Giza CC, Hovda DA. The new neurometabolic cascade of concussion. Neurosurgery. 2014;75:S24–S33.
pubmed: 25232881
Loane DJ, Faden AI. Neuroprotection for traumatic brain injury: translational challenges and emerging therapeutic strategies. Trends Pharmacol Sci. 2010;31:596–604.
pubmed: 21035878
pmcid: 2999630
Xiong Y, Gu Q, Peterson P, Muizelaar JP, Lee C. Mitochondrial dysfunction and calcium perturbation induced by traumatic brain injury. J Neurotrauma. 1997;14:23–34.
pubmed: 9048308
Hernandez A, Tan C, Plattner F, Logsdon AF, Pozo K, Yousuf MA, et al. Exposure to mild blast forces induces neuropathological effects, neurophysiological deficits and biochemical changes. Mol Brain. 2018;11:64.
pubmed: 30409147
pmcid: 6225689
Mathews ZR, Koyfman A. Blast injuries. J Emerg Med. 2015;49:573–87.
pubmed: 26072319
Swanson TM, Isaacson BM, Cyborski CM, French LM, Tsao JW, Pasquina PF. Traumatic brain injury incidence, clinical overview, and policies in the US military health system since 2000. Public Health Rep. 2017;132:251–9.
pubmed: 28135424
pmcid: 5349478
Ruff RM, Iverson GL, Barth JT, Bush SS, Broshek DK, Policy N, et al. Recommendations for diagnosing a mild traumatic brain injury: a National Academy of Neuropsychology education paper. Arch Clin Neuropsychol. 2009;24:3–10.
pubmed: 19395352
Traumatic Brain Injury Protection: Blast Pressure Sensors in Helmets. https://ipo.llnl.gov/technologies/instruments-sensors-and-electronics/traumatic-brain-injury-protection-blast-pressure , 2022, Accessed Date Accessed 2022 Accessed.
Lucke-Wold BP, Turner RC, Logsdon AF, Rosen CL, Qaiser R. Blast Scaling Parameters: Transitioning from Lung to Skull Base Metrics. J Surg Emerg Med. 2017;1:3.
pubmed: 28386605
pmcid: 5380369
McCrea M, Kelly JP, Randolph C, Cisler R, Berger L. Immediate neurocognitive effects of concussion. Neurosurgery. 2002;50:1032–42.
pubmed: 11950406
McCrea M, Guskiewicz KM, Marshall SW, Barr W, Randolph C, Cantu RC, et al. Acute effects and recovery time following concussion in collegiate football players: the NCAA Concussion Study. Jama. 2003;290:2556–63.
pubmed: 14625332
Alexander MP. Mild traumatic brain injury: pathophysiology, natural history, and clinical management. Neurology. 1995;45:1253–60.
pubmed: 7617178
Kushner D. Mild traumatic brain injury: toward understanding manifestations and treatment. Arch Intern Med. 1998;158:1617–24.
pubmed: 9701095
Iverson GL. Complicated vs uncomplicated mild traumatic brain injury: acute neuropsychological outcome. Brain Inj. 2006;20:1335–44.
pubmed: 17378225
Iverson GL, Lange RT. Examination of" postconcussion-like" symptoms in a healthy sample. Appl Neuropsychol. 2003;10:137–44.
pubmed: 12890639
Smith-Seemiller L, Fow NR, Kant R, Franzen MD. Presence of post-concussion syndrome symptoms in patients with chronic pain vs mild traumatic brain injury. Brain Inj. 2003;17:199–206.
pubmed: 12623496
Van Praag DL, Cnossen MC, Polinder S, Wilson L, Maas AI. Post-traumatic stress disorder after civilian traumatic brain injury: A systematic review and meta-analysis of prevalence rates. J Neurotrauma. 2019;36:3220–32.
pubmed: 31238819
pmcid: 6857464
Hoge CW, McGurk D, Thomas JL, Cox AL, Engel CC, Castro CA. Mild traumatic brain injury in US soldiers returning from Iraq. N Engl J Med. 2008;358:453–63.
pubmed: 18234750
Kim SY, Soumoff AA, Raiciulescu S, Kemezis PA, Spinks EA, Brody DL, et al. Association of Traumatic Brain Injury Severity and Self-Reported Neuropsychiatric Symptoms in Wounded Military Service Members. Neurotrauma Rep. 2023;4:14–24.
pubmed: 36726873
pmcid: 9886188
Steffen-Allen FT, Marton KM, Graves LV, Ketchum JM, Silva MA, Loughlin JK, et al. Longitudinal patterns of alcohol use following traumatic brain injury in an active duty and young veteran military sample: a VA TBI Model Systems study. J Head Trauma Rehabilitation. 2022;37:350–60.
Kennedy JE, Lu LH, Reid MW, Leal FO, Cooper DB. Correlates of depression in US military service members with a history of mild traumatic brain injury. Mil Med. 2019;184:148–54.
pubmed: 30901404
Iverson GL. Outcome from mild traumatic brain injury. Curr Opin Psych. 2005;18:301–17.
Mild traumatic brain injury and postconcussion syndrome: The new evidence base for diagnosis and treatment. 2008. Aacn Workshop.
Satz P, Alfano MS, Light R, Morgenstern H, Zaucha K, Asarnow RF, et al. Persistent post-concussive syndrome: A proposed methodology and literature review to determine the effects, if any, of mild head and other bodily injury. J Clin Exp Neuropsychol. 1999;21:620–8.
pubmed: 10572282
Silver CH. Ecological validity of neuropsychological assessment in childhood traumatic brain injury. J Head Trauma Rehabilitation. 2000;15:973–88.
Geary EK, Kraus MF, Pliskin NH, Little DM. Verbal learning differences in chronic mild traumatic brain injury. J Int Neuropsychological Soc. 2010;16:506–16.
Lucke-Wold BP, Turner RC, Logsdon AF, Bailes JE, Huber JD, Rosen CL. Linking traumatic brain injury to chronic traumatic encephalopathy: identification of potential mechanisms leading to neurofibrillary tangle development. J Neurotrauma. 2014;31:1129–38.
pubmed: 24499307
pmcid: 4089022
Lewine JD, Plis S, Ulloa A, Williams C, Spitz M, Foley J, et al. Quantitative EEG biomarkers for mild traumatic brain injury. J Clin Neurophysiol. 2019;36:298–305.
pubmed: 31094883
Byrnes KR, Wilson CM, Brabazon F, Von Leden R, Jurgens JS, Oakes TR, et al. FDG-PET imaging in mild traumatic brain injury: a critical review. Front Neuroenergetics. 2014;5:13.
pubmed: 24409143
pmcid: 3885820
Bigler ED. Structural image analysis of the brain in neuropsychology using magnetic resonance imaging (MRI) techniques. Neuropsychol Rev. 2015;25:224–49.
pubmed: 26280751
Bigler ED, Maxwell WL. Neuropathology of mild traumatic brain injury: relationship to neuroimaging findings. Brain Imaging Behav. 2012;6:108–36.
pubmed: 22434552
Bigler ED. Traumatic brain injury, neuroimaging, and neurodegeneration. Front Hum Neurosci. 2013;7:395.
pubmed: 23964217
pmcid: 3734373
Tate DF, Khedraki R, Neeley ES, Ryser DK, Bigler ED. Cerebral volume loss, cognitive deficit, and neuropsychological performance: comparative measures of brain atrophy: II. Traumatic brain injury. J Int Neuropsychological Soc. 2011;17:308–16.
Van Essen DC, Drury HA, Joshi S, Miller MI. Functional and structural mapping of human cerebral cortex: solutions are in the surfaces. Proc Natl Acad Sci. 1998;95:788–95.
pubmed: 9448242
pmcid: 33799
Winkler AM, Kochunov P, Blangero J, Almasy L, Zilles K, Fox PT, et al. Cortical thickness or grey matter volume? The importance of selecting the phenotype for imaging genetics studies. Neuroimage. 2010;53:1135–46.
pubmed: 20006715
Michael AP, Stout J, Roskos PT, Bolzenius J, Gfeller J, Mogul D, et al. Evaluation of cortical thickness after traumatic brain injury in military veterans. J Neurotrauma. 2015;32:1751–8.
pubmed: 26131617
Tate D, York G, Reid M, Cooper D, Jones L, Robin D, et al. Preliminary findings of cortical thickness abnormalities in blast injured service members and their relationship to clinical findings. Brain Imaging Behav. 2014;8:102–9.
pubmed: 24100952
pmcid: 4714342
Patel JB, Wilson SH, Oakes TR, Santhanam P, Weaver LK. Structural and Volumetric Brain MRI Findings in Mild Traumatic Brain Injury. AJNR Am J Neuroradiol. 2020;41:92–99.
pubmed: 31896572
pmcid: 6975320
Santhanam P, Wilson SH, Oakes TR, Weaver LK. Accelerated age-related cortical thinning in mild traumatic brain injury. Brain Behav. 2019;9:e01161.
pubmed: 30488646
Martindale SL, Rostami R, Shura RD, Taber KH, Rowland JA. Brain Volume in Veterans: Relationship to Posttraumatic Stress Disorder and Mild Traumatic Brain Injury. J Head Trauma Rehabil. 2020;35:E330–e341.
pubmed: 32108709
Lopez KC, Leary JB, Pham DL, Chou YY, Dsurney J, Chan L. Brain Volume, Connectivity, and Neuropsychological Performance in Mild Traumatic Brain Injury: The Impact of Post-Traumatic Stress Disorder Symptoms. J Neurotrauma. 2017;34:16–22.
pubmed: 26942337
pmcid: 5198106
Eierud C, Nathan DE, Bonavia GH, Ollinger J, Riedy G. Cortical thinning in military blast compared to non-blast persistent mild traumatic brain injuries. Neuroimage Clin. 2019;22:101793.
pubmed: 30939340
pmcid: 6446073
Fazekas F, Kleinert R, Offenbacher H, Schmidt R, Kleinert G, Payer F, et al. Pathologic correlates of incidental MRI white matter signal hyperintensities. Neurology. 1993;43:1683–1683.
pubmed: 8414012
Trifan G, Gattu R, Haacke EM, Kou Z, Benson RR. MR imaging findings in mild traumatic brain injury with persistent neurological impairment. Magn Reson Imaging. 2017;37:243–51.
pubmed: 27939436
Bigler ED. Neuroimaging biomarkers in mild traumatic brain injury (mTBI). Neuropsychol Rev. 2013;23:169–209.
pubmed: 23974873
Hopkins RO, Beck CJ, Burnett DL, Weaver LK, Victoroff J, Bigler ED. Prevalence of white matter hyperintensities in a young healthy population. J Neuroimaging. 2006;16:243–51.
pubmed: 16808826
Iverson GL, Hakulinen U, Wäljas M, Dastidar P, Lange RT, Soimakallio S, et al. To exclude or not to exclude: white matter hyperintensities in diffusion tensor imaging research. Brain Inj. 2011;25:1325–32.
pubmed: 22077537
Clark AL, Sorg SF, Schiehser DM, Luc N, Bondi MW, Sanderson M, et al. Deep white matter hyperintensities affect verbal memory independent of PTSD symptoms in veterans with mild traumatic brain injury. Brain Inj. 2016;30:864–71.
pubmed: 27058006
Spitz G, Maller JJ, Ng A, O’Sullivan R, Ferris NJ, Ponsford JL. Detecting lesions after traumatic brain injury using susceptibility weighted imaging: a comparison with fluid-attenuated inversion recovery and correlation with clinical outcome. J Neurotrauma. 2013;30:2038–50.
pubmed: 23952803
Tate DF, Gusman M, Kini J, Reid M, Velez CS, Drennon AM, et al. Susceptibility weighted imaging and white matter abnormality findings in service members with persistent cognitive symptoms following mild traumatic brain injury. Mil Med. 2017;182:e1651–e1658.
pubmed: 28290939
Berginström N, Nordström P, Nyberg L, Nordström A. White matter hyperintensities increases with traumatic brain injury severity: associations to neuropsychological performance and fatigue. Brain Inj. 2020;34:415–20.
pubmed: 32037894
Lippa SM, Kenney K, Riedy G, Ollinger J. White Matter Hyperintensities Are Not Related to Symptomatology or Cognitive Functioning in Service Members with a Remote History of Traumatic Brain Injury. Neurotrauma Rep. 2021;2:245–54.
pubmed: 34223555
pmcid: 8244514
Wade BS, Valcour VG, Wendelken-Riegelhaupt L, Esmaeili-Firidouni P, Joshi SH, Gutman BA, et al. Mapping abnormal subcortical brain morphometry in an elderly HIV+ cohort. NeuroImage: Clin. 2015;9:564–73.
pubmed: 26640768
Kim GH, Lee JH, Seo SW, Kim JH, Seong J-K, Ye BS, et al. Hippocampal volume and shape in pure subcortical vascular dementia. Neurobiol Aging. 2015;36:485–91.
pubmed: 25444608
Tate DF, Wade BS, Velez CS, Drennon AM, Bolzenius J, Gutman BA, et al. Volumetric and shape analyses of subcortical structures in United States service members with mild traumatic brain injury. J Neurol. 2016;263:2065–79.
pubmed: 27435967
pmcid: 5564450
Tate DF, Wade BSC, Velez CS, Drennon AM, Bolzenius JD, Cooper DB, et al. Subcortical shape and neuropsychological function among U.S. service members with mild traumatic brain injury. Brain Imaging Behav. 2019;13:377–88.
pubmed: 29564659
Basser PJ, Mattiello J, LeBihan D. Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson, Ser B. 1994;103:247–54.
Pierpaoli C, Jezzard P, Basser PJ, Barnett A, Di Chiro G. Diffusion tensor MR imaging of the human brain. Radiology. 1996;201:637–48.
pubmed: 8939209
Hagmann P, Jonasson L, Maeder P, Thiran J-P, Wedeen VJ, Meuli R. Understanding diffusion MR imaging techniques: from scalar diffusion-weighted imaging to diffusion tensor imaging and beyond. Radiographics. 2006;26:S205–S223.
pubmed: 17050517
Basser PJ, Mattiello J, LeBihan D. MR diffusion tensor spectroscopy and imaging. Biophysical J. 1994;66:259–67.
Asken BM, DeKosky ST, Clugston JR, Jaffee MS, Bauer RM. Diffusion tensor imaging (DTI) findings in adult civilian, military, and sport-related mild traumatic brain injury (mTBI): a systematic critical review. Brain Imaging Behav. 2018;12:585–612.
pubmed: 28337734
Davenport ND, Lim KO, Armstrong MT, Sponheim SR. Diffuse and spatially variable white matter disruptions are associated with blast-related mild traumatic brain injury. Neuroimage. 2012;59:2017–24.
pubmed: 22040736
Petrie EC, Cross DJ, Yarnykh VL, Richards T, Martin NM, Pagulayan K, et al. Neuroimaging, behavioral, and psychological sequelae of repetitive combined blast/impact mild traumatic brain injury in Iraq and Afghanistan war veterans. J Neurotrauma. 2014;31:425–36.
pubmed: 24102309
pmcid: 3934596
Enigma military brain injury: a coordinated meta-analysis of diffusion MRI from multiple cohorts. Proceedings of the 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018) 2018. IEEE.
Hayes JP, Miller DR, Lafleche G, Salat DH, Verfaellie M. The nature of white matter abnormalities in blast-related mild traumatic brain injury. NeuroImage: Clin. 2015;8:148–56.
pubmed: 26106539
Jorge RE, Acion L, White T, Tordesillas-Gutierrez D, Pierson R, Crespo-Facorro B, et al. White matter abnormalities in veterans with mild traumatic brain injury. Am J Psych. 2012;169:1284–91.
Sorg SF, Schiehser DM, Bondi MW, Luc N, Clark AL, Jacobson MW, et al. White matter microstructural compromise is associated with cognition but not PTSD symptoms in military Veterans with traumatic brain injury. J Head Trauma Rehabilitation. 2016;31:297.
Hutchinson EB, Schwerin SC, Avram AV, Juliano SL, Pierpaoli C. Diffusion MRI and the detection of alterations following traumatic brain injury. J Neurosci Res. 2018;96:612–25.
pubmed: 28609579
Yeh P-H, Lippa SM, Brickell TA, Ollinger J, French LM, Lange RT. Longitudinal changes of white matter microstructure following traumatic brain injury in US military service members. Brain Commun. 2022;4:fcac132.
pubmed: 35702733
pmcid: 9185378
Mac Donald CL, Barber J, Andre J, Panks C, Zalewski K, Temkin N. Longitudinal neuroimaging following combat concussion: sub-acute, 1 year and 5 years post-injury. Brain Commun. 2019;1:fcz031.
Savjani RR, Taylor BA, Acion L, Wilde EA, Jorge RE. Accelerated changes in cortical thickness measurements with age in military service members with traumatic brain injury. J Neurotrauma. 2017;34:3107–16.
pubmed: 28657432
Yeh PH, Lippa SM, Brickell TA, Ollinger J, French LM, Lange RT. Longitudinal changes of white matter microstructure following traumatic brain injury in U.S. military service members. Brain Commun. 2022;4:fcac132.
pubmed: 35702733
pmcid: 9185378
Lepage C, de Pierrefeu A, Koerte IK, Coleman MJ, Pasternak O, Grant G, et al. White matter abnormalities in mild traumatic brain injury with and without post-traumatic stress disorder: a subject-specific diffusion tensor imaging study. Brain Imaging Behav. 2018;12:870–81.
pubmed: 28676987
pmcid: 5756136
Isaac L, Main KL, Soman S, Gotlib IH, Furst AJ, Kinoshita LM, et al. The impact of depression on Veterans with PTSD and traumatic brain injury: a diffusion tensor imaging study. Biol Psychol. 2015;105:20–28.
pubmed: 25559772
Matthews SC, Strigo IA, Simmons AN, O’Connell RM, Reinhardt LE, Moseley SA. A multimodal imaging study in US veterans of Operations Iraqi and Enduring Freedom with and without major depression after blast-related concussion. Neuroimage. 2011;54:S69–S75.
pubmed: 20451622
Lange RT, Lippa SM, Brickell TA, Yeh PH, Ollinger J, Wright M, et al. Post-Traumatic Stress Disorder Is Associated with Neuropsychological Outcome but Not White Matter Integrity after Mild Traumatic Brain Injury. J Neurotrauma. 2021;38:63–73.
pubmed: 33395374
Logothetis NK. The underpinnings of the BOLD functional magnetic resonance imaging signal. J Neurosci. 2003;23:3963–71.
pubmed: 12764080
pmcid: 6741096
Raichle ME, Mintun MA. Brain work and brain imaging. Annu Rev Neurosci. 2006;29:449–76.
pubmed: 16776593
Sullivan DR, Hayes JP, Lafleche G, Salat DH, Verfaellie M. Functional brain alterations associated with cognitive control in blast-related mild traumatic brain injury. J Int Neuropsychological Soc. 2018;24:662–72.
Scheibel RS, Newsome MR, Troyanskaya M, Lin X, Steinberg JL, Radaideh M, et al. Altered brain activation in military personnel with one or more traumatic brain injuries following blast. J Int Neuropsychological Soc. 2012;18:89–100.
Fischer BL, Parsons M, Durgerian S, Reece C, Mourany L, Lowe MJ, et al. Neural activation during response inhibition differentiates blast from mechanical causes of mild to moderate traumatic brain injury. J Neurotrauma. 2014;31:169–79.
pubmed: 24020449
pmcid: 3900006
Dretsch MN, Daniel TA, Goodman AM, Katz JS, Denney T, Deshpande G, et al. Differential neural activation when voluntarily regulating emotions in service members with chronic mild traumatic brain injury. Appl Neuropsychol Adult. 2019;26:76–88.
pubmed: 28925716
Biswal B, Zerrin Yetkin F, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting human brain using echo‐planar MRI. Magn Reson Med. 1995;34:537–41.
pubmed: 8524021
Fair DA, Schlaggar BL, Cohen AL, Miezin FM, Dosenbach NU, Wenger KK, et al. A method for using blocked and event-related fMRI data to study “resting state” functional connectivity. Neuroimage. 2007;35:396–405.
pubmed: 17239622
Kiviniemi V, Kantola J-H, Jauhiainen J, Hyvärinen A, Tervonen O. Independent component analysis of nondeterministic fMRI signal sources. NeuroImage. 2003;19:253–60.
pubmed: 12814576
Bartels A, Zeki S. The chronoarchitecture of the human brain—natural viewing conditions reveal a time-based anatomy of the brain. NeuroImage. 2004;22:419–33.
pubmed: 15110035
Beckmann CF, DeLuca M, Devlin JT, Smith SM. Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc B: Biol Sci. 2005;360:1001–13.
Sheth C, Rogowska J, Legarreta M, McGlade E, Yurgelun-Todd D. Functional connectivity of the anterior cingulate cortex in Veterans with mild traumatic brain injury. Behav Brain Res. 2021;396:112882.
pubmed: 32853657
Pagulayan KF, Petrie EC, Cook DG, Hendrickson RC, Rau H, Reilly M, et al. Effect of blast-related mTBI on the working memory system: a resting state fMRI study. Brain Imaging Behav. 2020;14:949–60.
pubmed: 30519997
Mendez MF, Owens EM, Reza Berenji G, Peppers DC, Liang L-J, Licht EA. Mild traumatic brain injury from primary blast vs. blunt forces: post-concussion consequences and functional neuroimaging. NeuroRehabilitation. 2013;32:397–407.
pubmed: 23535805
Newsome MR, Durgerian S, Mourany L, Scheibel RS, Lowe MJ, Beall EB, et al. Disruption of caudate working memory activation in chronic blast-related traumatic brain injury. NeuroImage: Clin. 2015;8:543–53.
pubmed: 26110112
Smits M, Dippel DW, Houston GC, Wielopolski PA, Koudstaal PJ, Hunink MM, et al. Postconcussion syndrome after minor head injury: brain activation of working memory and attention. Hum Brain Mapp. 2009;30:2789–803.
pubmed: 19117278
Hillary FG, Roman CA, Venkatesan U, Rajtmajer SM, Bajo R, Castellanos ND. Hyperconnectivity is a fundamental response to neurological disruption. Neuropsychology. 2015;29:59.
pubmed: 24933491
Philippi CL, Velez CS, Wade BSC, Drennon AM, Cooper DB, Kennedy JE, et al. Distinct patterns of resting-state connectivity in U.S. service members with mild traumatic brain injury versus posttraumatic stress disorder. Brain Imaging Behav. 2021;15:2616–26.
pubmed: 33759113
Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci. 2009;10:186–98.
pubmed: 19190637
Sporns O. Graph theory methods: applications in brain networks. Dialogues clin Neurosci. 2018;20:11–120.
Rubinov M, Sporns O. Complex network measures of brain connectivity: uses and interpretations. Neuroimage. 2010;52:1059–69.
pubmed: 19819337
Kim SY, Liu M, Hong S-J, Toga AW, Barkovich AJ, Xu D, et al. Disruption and compensation of sulcation-based covariance networks in neonatal brain growth after perinatal injury. Cereb Cortex. 2020;30:6238–53.
pubmed: 32656563
pmcid: 7609941
Giacopelli G, Migliore M, Tegolo D. Graph-theoretical derivation of brain structural connectivity. Appl Math Comput. 2020;377:125150.
Stam CJ, Reijneveld JC. Graph theoretical analysis of complex networks in the brain. Nonlinear Biomed Phys. 2007;1:1–19.
Vecchio F, Miraglia F, Rossini PM. Connectome: Graph theory application in functional brain network architecture. Clin Neurophysiol Pract. 2017;2:206–13.
pubmed: 30214997
pmcid: 6123924
Bassett DS, Bullmore ET. Small-world brain networks revisited. Neuroscientist. 2017;23:499–516.
pubmed: 27655008
Caeyenberghs K, Verhelst H, Clemente A, Wilson PH. Mapping the functional connectome in traumatic brain injury: What can graph metrics tell us? Neuroimage. 2017;160:113–23.
pubmed: 27919750
Imms P, Clemente A, Cook M, D’Souza W, Wilson PH, Jones DK, et al. The structural connectome in traumatic brain injury: A meta-analysis of graph metrics. Neurosci Biobehav Rev. 2019;99:128–37.
pubmed: 30615935
pmcid: 7615245
Aerts H, Fias W, Caeyenberghs K, Marinazzo D. Brain networks under attack: robustness properties and the impact of lesions. Brain. 2016;139:3063–83.
pubmed: 27497487
Pandit AS, Expert P, Lambiotte R, Bonnelle V, Leech R, Turkheimer FE, et al. Traumatic brain injury impairs small-world topology. Neurology. 2013;80:1826–33.
pubmed: 23596068
pmcid: 3908350
Han K, Mac Donald CL, Johnson AM, Barnes Y, Wierzechowski L, Zonies D, et al. Disrupted modular organization of resting-state cortical functional connectivity in US military personnel following concussive ‘mild’blast-related traumatic brain injury. Neuroimage. 2014;84:76–96.
pubmed: 23968735
Messé A, Caplain S, Pélégrini-Issac M, Blancho S, Lévy R, Aghakhani N, et al. Specific and evolving resting-state network alterations in post-concussion syndrome following mild traumatic brain injury. PloS one. 2013;8:e65470.
pubmed: 23755237
pmcid: 3675039
Akiki TJ, Averill CL, Wrocklage KM, Scott JC, Averill LA, Schweinsburg B, et al. Topology of brain functional connectivity networks in posttraumatic stress disorder. Data Brief. 2018;20:1658–75.
pubmed: 30364328
pmcid: 6195053
Akiki TJ, Averill CL, Wrocklage KM, Scott JC, Averill LA, Schweinsburg B, et al. Default mode network abnormalities in posttraumatic stress disorder: a novel network-restricted topology approach. Neuroimage. 2018;176:489–98.
pubmed: 29730491
Sun D, Davis SL, Haswell CC, Swanson CA, Workgroup M-AM, LaBar KS, et al. Brain structural covariance network topology in remitted posttraumatic stress disorder. Front Psych. 2018;9:90.
Sun D, Peverill MR, Swanson CS, McLaughlin KA, Morey RA. Structural covariance network centrality in maltreated youth with posttraumatic stress disorder. J Psych Res. 2018;98:70–77.
Dall’Acqua P, Johannes S, Mica L, Simmen HP, Glaab R, Fandino J, et al. Functional and Structural Network Recovery after Mild Traumatic Brain Injury: A 1-Year Longitudinal Study. Front Hum Neurosci. 2017;11:280.
pubmed: 28611614
pmcid: 5447750
Boroda E, Armstrong M, Gilmore CS, Gentz C, Fenske A, Fiecas M, et al. Network topology changes in chronic mild traumatic brain injury (mTBI). Neuroimage Clin. 2021;31:102691.
pubmed: 34023667
pmcid: 8163989
Prasad K, Rubin J, Mitra A, Lewis M, Theis N, Muldoon B, et al. Structural covariance networks in schizophrenia: A systematic review Part II. Schizophrenia Res. 2022;239:176–91.
Bassett DS, Sporns O. Network neuroscience. Nat Neurosci. 2017;20:353–64.
pubmed: 28230844
pmcid: 5485642
Proessl F, Dretsch MN, Connaboy C, Lovalekar M, Dunn-Lewis C, Canino MC, et al. Structural Connectome Disruptions in Military Personnel with Mild Traumatic Brain Injury and Post-Traumatic Stress Disorder. J Neurotrauma. 2020;37:2102–12.
pubmed: 32340548
Hui ES, Cheung MM, Qi L, Wu EX. Towards better MR characterization of neural tissues using directional diffusion kurtosis analysis. Neuroimage. 2008;42:122–34.
pubmed: 18524628
Glenn GR, Helpern JA, Tabesh A, Jensen JH. Quantitative assessment of diffusional kurtosis anisotropy. NMR Biomed. 2015;28:448–59.
pubmed: 25728763
pmcid: 4378654
Rathi Y, Michailovich O, Laun F, Setsompop K, Grant PE, Westin C-F. Multi-shell diffusion signal recovery from sparse measurements. Med Image Anal. 2014;18:1143–56.
pubmed: 25047866
pmcid: 4145038
Stenberg J, Eikenes L, Moen KG, Vik A, Håberg AK, Skandsen T. Acute diffusion tensor and kurtosis imaging and outcome following mild traumatic brain injury. J Neurotrauma. 2021;38:2560–71.
pubmed: 33858218
pmcid: 8403189
Chung S, Fieremans E, Wang X, Kucukboyaci NE, Morton CJ, Babb J, et al. White matter tract integrity: an indicator of axonal pathology after mild traumatic brain injury. J Neurotrauma. 2018;35:1015–20.
pubmed: 29239261
pmcid: 5899287
Zhang H, Schneider T, Wheeler-Kingshott CA, Alexander DC. NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage. 2012;61:1000–16.
pubmed: 22484410
Palacios EM, Owen JP, Yuh EL, Wang MB, Vassar MJ, Ferguson AR, et al. The evolution of white matter microstructural changes after mild traumatic brain injury: a longitudinal DTI and NODDI study. Sci Adv. 2020;6:eaaz6892.
pubmed: 32821816
pmcid: 7413733
In MH, Tan ET, Trzasko JD, Shu Y, Kang D, Yarach U, et al. Distortion‐free imaging: A double encoding method (DIADEM) combined with multiband imaging for rapid distortion‐free high‐resolution diffusion imaging on a compact 3T with high‐performance gradients. J Magn Reson Imaging. 2020;51:296–310.
pubmed: 31111581
Foo TK, Tan ET, Vermilyea ME, Hua Y, Fiveland EW, Piel JE, et al. Highly efficient head‐only magnetic field insert gradient coil for achieving simultaneous high gradient amplitude and slew rate at 3.0 T (MAGNUS) for brain microstructure imaging. Magn Reson Med. 2020;83:2356–69.
pubmed: 31763726
Maffei C, Lee C, Planich M, Ramprasad M, Ravi N, Trainor D, et al. Using diffusion MRI data acquired with ultra-high gradient strength to improve tractography in routine-quality data. Neuroimage. 2021;245:118706.
pubmed: 34780916
Setsompop K, Kimmlingen R, Eberlein E, Witzel T, Cohen-Adad J, McNab JA, et al. Pushing the limits of in vivo diffusion MRI for the Human Connectome Project. Neuroimage. 2013;80:220–33.
pubmed: 23707579
Abad N, Madhavan R, Sprenger T, Bhushan C, Zhu A, Marinelli L, et al. Brain Microstructure Imaging with Ultrahigh B-Encoding using MAGNUS High Performance Gradients. ISMRM Conference. 2022: Abstract #3546
Morris HD, Abad N, Madhavan R, Bhushan C, Zhu A, Marinelli L, et al. Diffusion Imaging comparison of high-performance Gradient system (MAGNUS) with clinical MR system. ISMRM Conference. 2022; Abstract #1370
Tan ET, Shih RY, Mitra J, Sprenger T, Hua Y, Bhushan C, et al. Oscillating diffusion‐encoding with a high gradient‐amplitude and high slew‐rate head‐only gradient for human brain imaging. Magn Reson Med. 2020;84:950–65.
pubmed: 32011027
pmcid: 7180099
Shih R, Zhu A, DeMarco JK, Morris HD, Hood M, Abad N, et al. Initial Clinical Experience with MAGNUS Ultra-High-Performance Gradient Coil for Diffusion Microstructure Imaging of Intracranial Pathology. ISMRM Conference. 2022; Abstract #3361
Benjamini D, Iacono D, Komlosh ME, Perl DP, Brody DL, Basser PJ. Diffuse axonal injury has a characteristic multidimensional MRI signature in the human brain. Brain. 2021;144:800–16.
pubmed: 33739417
pmcid: 8041044
Peters ME, Gardner RC. Traumatic brain injury in older adults: do we need a different approach? Future Med. 2018;3:CNC56.
Ziebell JM, Rowe RK, Muccigrosso MM, Reddaway JT, Adelson PD, Godbout JP, et al. Aging with a traumatic brain injury: Could behavioral morbidities and endocrine symptoms be influenced by microglial priming? Brain, Behav, Immun. 2017;59:1–7.
pubmed: 26975888
Iacono D, Raiciulescu S, Olsen C, Perl DP. Traumatic brain injury exposure lowers age of cognitive decline in AD and non-AD conditions. Front Neurol. 2021;12:1–11.
Cole JH. Multimodality neuroimaging brain-age in UK biobank: relationship to biomedical, lifestyle, and cognitive factors. Neurobiol Aging. 2020;92:34–42.
pubmed: 32380363
pmcid: 7280786
Cole JH, Poudel RP, Tsagkrasoulis D, Caan MW, Steves C, Spector TD, et al. Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker. NeuroImage. 2017;163:115–24.
pubmed: 28765056
Dennis EL, Taylor BA, Newsome MR, Troyanskaya M, Abildskov TJ, Betts AM, et al. Advanced brain age in deployment-related traumatic brain injury: A LIMBIC-CENC neuroimaging study. Brain Inj. 2022;36:662–72.
pubmed: 35125044
pmcid: 9187589
Baugh CM, Stamm JM, Riley DO, Gavett BE, Shenton ME, Lin A, et al. Chronic traumatic encephalopathy: neurodegeneration following repetitive concussive and subconcussive brain trauma. Brain Imaging Behav. 2012;6:244–54.
pubmed: 22552850
McKee AC, Robinson ME. Military‐related traumatic brain injury and neurodegeneration. Alzheimer’s Dement. 2014;10:S242–S253.
Van Horn JD, Toga AW. Human neuroimaging as a “Big Data” science. Brain Imaging Behav. 2014;8:323–31.
pubmed: 24113873
pmcid: 3983169
Weiner MW, Veitch DP, Hayes J, Neylan T, Grafman J, Aisen PS, et al. Effects of traumatic brain injury and posttraumatic stress disorder on Alzheimer’s disease in veterans, using the Alzheimer’s Disease Neuroimaging Initiative. Alzheimer’s Dement. 2014;10:S226–S235.
Clark AL, Weigand AJ, Bangen KJ, Thomas KR, Eglit GML, Bondi MW, et al. Higher cerebrospinal fluid tau is associated with history of traumatic brain injury and reduced processing speed in Vietnam-era veterans: A Department of Defense Alzheimer’s Disease Neuroimaging Initiative (DOD-ADNI) study. Alzheimers Dement (Amst). 2021;13:e12239.
pubmed: 34692979
Soumoff AA, Driscoll MY, Kim S, Benedek DM, Choi KH. Hospitalization for physical injury may contribute to recovery of invisible war wounds: Response to Peterson’s (2021) commentary on Soumoff et al.(2021). J Trauma Stress. 2022;35:341–2.
pubmed: 34773715
Davenport ND, Lamberty GJ, Nelson NW, Lim KO, Armstrong MT, Sponheim SR. PTSD confounds detection of compromised cerebral white matter integrity in military veterans reporting a history of mild traumatic brain injury. Brain Inj. 2016;30:1491–1500.
pubmed: 27834537
Kang SH, Liu M, Park G, Kim SY, Lee H, Matloff W, et al. Different effects of cardiometabolic syndrome on brain age in relation to gender and ethnicity. Alzheimer’s Res Ther. 2023;15:68.
Newcombe V. Neuroimaging of TBI, moving towards ‘big data’and precision management. J Neurological Sci. 2019;405:39–40.
Topolovec-Vranic J, Pollmann-Mudryj M-A, Ouchterlony D, Klein D, Spence J, Romaschin A, et al. The Value of Serum Biomarkers in Prediction Models of Outcome After Mild Traumatic Brain Injury. J Trauma Acute Care Surg. 2011;71:S478–S486.
Lippa SM, Yeh PH, Gill J, French LM, Brickell TA, Lange RT. Plasma Tau and Amyloid Are Not Reliably Related to Injury Characteristics, Neuropsychological Performance, or White Matter Integrity in Service Members with a History of Traumatic Brain Injury. J Neurotrauma. 2019;36:2190–9.
pubmed: 30834814
pmcid: 6909749
Lippa SM, Werner JK, Miller MC, Gill JM, Diaz-Arrastia R, Kenney K. Recent advances in blood-based biomarkers of remote combat-related traumatic brain injury. Curr Neurol Neurosci Rep. 2020;20:1–11.
Kenney K, Qu B-X, Lai C, Devoto C, Motamedi V, Walker WC, et al. Higher exosomal phosphorylated tau and total tau among veterans with combat-related repetitive chronic mild traumatic brain injury. Brain Inj. 2018;32:1276–84.
pubmed: 29889559
Clinchot DM, Bogner J, Mysiw WJ, Fugate L, Corrigan J. Defining sleep disturbance after brain Injury1. Am J Phys Med Rehabilitation. 1998;77:291–5.
Wickwire EM, Williams SG, Roth T, Capaldi VF, Jaffe M, Moline M, et al. Sleep, sleep disorders, and mild traumatic brain injury. What we know and what we need to know: findings from a national working group. Neurotherapeutics. 2016;13:403–17.
pubmed: 27002812
pmcid: 4824019
Piantino JA, Iliff JJ, Lim MM. The bidirectional link between sleep disturbances and traumatic brain injury symptoms: A role for glymphatic dysfunction? Biol Psych. 2021;91:478–87.
Piantino J, Schwartz DL, Luther M, Newgard C, Silbert L, Raskind M, et al. Link between Mild Traumatic Brain Injury, Poor Sleep, and Magnetic Resonance Imaging: Visible Perivascular Spaces in Veterans. J Neurotrauma. 2021;38:2391–9.
pubmed: 33599176
pmcid: 8390772
Taoka T, Masutani Y, Kawai H, Nakane T, Matsuoka K, Yasuno F, et al. Evaluation of glymphatic system activity with the diffusion MR technique: diffusion tensor image analysis along the perivascular space (DTI-ALPS) in Alzheimer’s disease cases. Jpn J Radiol. 2017;35:172–8.
pubmed: 28197821
Gouveia-Freitas K, Bastos-Leite AJ. Perivascular spaces and brain waste clearance systems: relevance for neurodegenerative and cerebrovascular pathology. Neuroradiology. 2021;63:1581–97.
pubmed: 34019111
pmcid: 8460534
Chen H-L, Chen P-C, Lu C-H, Tsai N-W, Yu C-C, Chou K-H, et al. Associations among cognitive functions, plasma DNA, and diffusion tensor image along the perivascular space (DTI-ALPS) in patients with Parkinson’s disease. Oxid Med Cell Longev. 2021;2021:4034509.
pubmed: 33680283
pmcid: 7904342
Bae YJ, Choi BS, Kim J-M, Choi J-H, Cho SJ, Kim JH. Altered glymphatic system in idiopathic normal pressure hydrocephalus. Parkinsonism Relat Disord. 2021;82:56–60.
pubmed: 33248394
Polinder S, Cnossen MC, Real RG, Covic A, Gorbunova A, Voormolen DC, et al. A multidimensional approach to post-concussion symptoms in mild traumatic brain injury. Front Neurol. 2018;9:1113.
pubmed: 30619066
pmcid: 6306025