Discovering covalent inhibitors of protein-protein interactions from trillions of sulfur(VI) fluoride exchange-modified oligonucleotides.


Journal

Nature chemistry
ISSN: 1755-4349
Titre abrégé: Nat Chem
Pays: England
ID NLM: 101499734

Informations de publication

Date de publication:
Dec 2023
Historique:
received: 04 06 2022
accepted: 24 07 2023
medline: 6 12 2023
pubmed: 1 9 2023
entrez: 31 8 2023
Statut: ppublish

Résumé

Molecules that covalently engage target proteins are widely used as activity-based probes and covalent drugs. The performance of these covalent inhibitors is, however, often compromised by the paradox of efficacy and risk, which demands a balance between reactivity and selectivity. The challenge is more evident when targeting protein-protein interactions owing to their low ligandability and undefined reactivity. Here we report sulfur(VI) fluoride exchange (SuFEx) in vitro selection, a general platform for high-throughput discovery of covalent inhibitors from trillions of SuFEx-modified oligonucleotides. With SuFEx in vitro selection, we identified covalent inhibitors that cross-link distinct residues of the SARS-CoV-2 spike protein at its protein-protein interaction interface with the human angiotensin-converting enzyme 2. A separate suite of covalent inhibitors was isolated for the human complement C5 protein. In both cases, we observed a clear disconnection between binding affinity and cross-linking reactivity, indicating that direct search for the aimed reactivity-as enabled by SuFEx in vitro selection-is vital for discovering covalent inhibitors of high selectivity and potency.

Identifiants

pubmed: 37653229
doi: 10.1038/s41557-023-01304-z
pii: 10.1038/s41557-023-01304-z
doi:

Substances chimiques

Fluorides Q80VPU408O
spike protein, SARS-CoV-2 0
Sulfur 70FD1KFU70
Spike Glycoprotein, Coronavirus 0
Proteins 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1705-1714

Subventions

Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 22074076, 21621003
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 51973112, 52225302

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Heal, W. P., Dang, T. H. T. & Tate, E. W. Activity-based probes: discovering new biology and new drug targets. Chem. Soc. Rev. 40, 246–257 (2011).
pubmed: 20886146 doi: 10.1039/C0CS00004C
Wu, L. et al. An overview of activity-based probes for glycosidases. Curr. Opin. Chem. Biol. 53, 25–36 (2019).
pubmed: 31419756 doi: 10.1016/j.cbpa.2019.05.030
Singh, J., Petter, R. C., Baillie, T. A. & Whitty, A. The resurgence of covalent drugs. Nat. Rev. Drug Discovery 10, 307–317 (2011).
pubmed: 21455239 doi: 10.1038/nrd3410
Abdeldayem, A., Raouf, Y. S., Constantinescu, S. N., Moriggl, R. & Gunning, P. T. Advances in covalent kinase inhibitors. Chem. Soc. Rev. 49, 2617–2687 (2020).
pubmed: 32227030 doi: 10.1039/C9CS00720B
Pettinger, J., Jones, K. & Cheeseman, M. D. Lysine-targeting covalent inhibitors. Angew. Chem. Int. Ed. 56, 15200–15209 (2017).
doi: 10.1002/anie.201707630
Maurais, A. J. & Weerapana, E. Reactive-cysteine profiling for drug discovery. Curr. Opin. Chem. Biol. 50, 29–36 (2019).
pubmed: 30897495 pmcid: 6584045 doi: 10.1016/j.cbpa.2019.02.010
Narayanan, A. & Jones, L. H. Sulfonyl fluorides as privileged warheads in chemical biology. Chem. Sci. 6, 2650–2659 (2015).
pubmed: 28706662 pmcid: 5489032 doi: 10.1039/C5SC00408J
Lagoutte, R., Patouret, R. & Winssinger, N. Covalent inhibitors: an opportunity for rational target selectivity. Curr. Opin. Chem. Biol. 39, 54–63 (2017).
pubmed: 28609675 doi: 10.1016/j.cbpa.2017.05.008
Moore, A. R., Rosenberg, S. C., McCormick, F. & Malek, S. RAS-targeted therapies: Is the undruggable drugged? Nat. Rev. Drug Discovery 19, 533–552 (2020).
pubmed: 32528145 doi: 10.1038/s41573-020-0068-6
Chen, S. et al. Identification of highly selective covalent inhibitors by phage display. Nat. Biotechnol. 39, 490–498 (2021).
pubmed: 33199876 doi: 10.1038/s41587-020-0733-7
Tivon, Y., Falcone, G. & Deiters, A. Protein labeling and crosslinking by covalent aptamers. Angew. Chem. Int. Ed. 60, 15899–15904 (2021).
doi: 10.1002/anie.202101174
Sharpe, A. H. & Pauken, K. E. The diverse functions of the PD1 inhibitory pathway. Nat. Rev. Immunol. 18, 153–167 (2018).
pubmed: 28990585 doi: 10.1038/nri.2017.108
Lan, J. et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 581, 215–220 (2020).
pubmed: 32225176 doi: 10.1038/s41586-020-2180-5
Ueda, T. et al. Enhanced suppression of a protein–protein interaction in cells using small-molecule covalent inhibitors based on an N-acyl-N-alkyl sulfonamide warhead. J. Am. Chem. Soc. 143, 4766–4774 (2021).
pubmed: 33733756 doi: 10.1021/jacs.1c00703
Gambini, L. et al. Covalent inhibitors of protein–protein interactions targeting lysine, tyrosine, or histidine residues. J. Med. Chem. 62, 5616–5627 (2019).
pubmed: 31095386 pmcid: 7577563 doi: 10.1021/acs.jmedchem.9b00561
Li, Q. K. et al. Developing covalent protein drugs via proximity-enabled reactive therapeutics. Cell 182, 85–97 (2020).
pubmed: 32579975 doi: 10.1016/j.cell.2020.05.028
Han, Y. et al. Covalently engineered protein minibinders with enhanced neutralization efficacy against escaping SARS-CoV-2 variants. J. Am. Chem. Soc. 144, 5702–5707 (2022).
pubmed: 35212528 doi: 10.1021/jacs.1c11554
Wang, N. & Wang, L. Genetically encoding latent bioreactive amino acids and the development of covalent protein drugs. Curr. Opin. Chem. Biol. 66, 102106 (2022).
pubmed: 34968810 doi: 10.1016/j.cbpa.2021.102106
Tabuchi, Y., Yang, J. & Taki, M. Inhibition of thrombin activity by a covalent-binding aptamer and reversal by the complementary strand antidote. Chem. Commun. 57, 2483–2486 (2021).
doi: 10.1039/D0CC08109D
Cohen, M. S., Zhang, C., Shokat, K. M. & Taunton, J. Structural bioinformatics-based design of selective, irreversible kinase inhibitors. Science 308, 1318–1321 (2005).
pubmed: 15919995 pmcid: 3641834 doi: 10.1126/science1108367
Bartel, D. P. & Szostak, J. W. Isolation of new ribozymes from a large pool of random sequences. Science 261, 1411–1418 (1993).
pubmed: 7690155 doi: 10.1126/science.7690155
Chapman, K. B. & Szostak, J. W. In vitro selection of catalytic RNAs. Curr. Opin. Struct. Biol. 4, 618–622 (1994).
pubmed: 11539575 doi: 10.1016/S0959-440X(94)90227-5
Liu, M., Chang, D. R. & Li, Y. F. Discovery and biosensing applications of diverse RNA-cleaving DNAzymes. Acc. Chem. Res. 50, 2273–2283 (2017).
pubmed: 28805376 doi: 10.1021/acs.accounts.7b00262
McGhee, C. E., Loh, K. Y. & Lu, Y. DNAzyme sensors for detection of metal ions in the environment and imaging them in living cells. Curr. Opin. Biotechnol. 45, 191–201 (2017).
pubmed: 28458112 pmcid: 5503749 doi: 10.1016/j.copbio.2017.03.002
Silverman, S. K. Pursuing DNA catalysts for protein modification. Acc. Chem. Res. 48, 1369–1379 (2015).
pubmed: 25939889 pmcid: 4439366 doi: 10.1021/acs.accounts.5b00090
Zhou, W. H., Saran, R. & Liu, J. W. Metal sensing by DNA. Chem. Rev. 117, 8272–8325 (2017).
pubmed: 28598605 doi: 10.1021/acs.chemrev.7b00063
Wang, Y. J., Nguyen, K., Spitale, R. C. & Chaput, J. C. A biologically stable DNAzyme that efficiently silences gene expression in cells. Nat. Chem. 13, 319–326 (2021).
pubmed: 33767363 doi: 10.1038/s41557-021-00645-x
Wang, Y. Y. et al. An RNA-cleaving threose nucleic acid enzyme capable of single point mutation discrimination. Nat. Chem. 14, 350–359 (2022).
pubmed: 34916596 doi: 10.1038/s41557-021-00847-3
Dunn, M. R., Jimenez, R. M. & Chaput, J. C. Analysis of aptamer discovery and technology. Nat. Rev. Chem. 1, 0076 (2017).
doi: 10.1038/s41570-017-0076
Zhou, J. H. & Rossi, J. Aptamers as targeted therapeutics: current potential and challenges. Nat. Rev. Drug Discovery 16, 181–202 (2017).
pubmed: 27807347 doi: 10.1038/nrd.2016.199
Brighty, G. J. et al. Using sulfuramidimidoyl fluorides that undergo sulfur(VI) fluoride exchange for inverse drug discovery. Nat. Chem. 12, 906–913 (2020).
pubmed: 32868886 pmcid: 7541551 doi: 10.1038/s41557-020-0530-4
He, Q., Johnston, J. & Zeitlinger, J. ChIP-nexus enables improved detection of in vivo transcription factor binding footprints. Nat. Biotechnol. 33, 395–401 (2015).
pubmed: 25751057 pmcid: 4390430 doi: 10.1038/nbt.3121
Fidanza, J. A., Ozaki, H. & Mclaughlin, L. W. Site-specific labeling of DNA sequences containing phosphorothioate diesters. J. Am. Chem. Soc. 114, 5509–5517 (1992).
doi: 10.1021/ja00040a004
Xiao, L., Gu, C. & Xiang, Y. Orthogonal activation of RNA-cleaving DNAzymes in live cells by reactive oxygen species. Angew. Chem. Int. Ed. 58, 14167–14172 (2019).
doi: 10.1002/anie.201908105
Gu, C. M. et al. Chemical synthesis of stimuli-responsive guide RNA for conditional control of CRISPR-Cas9 gene editing. Chem. Sci. 12, 9934–9945 (2021).
pubmed: 34377390 pmcid: 8317661 doi: 10.1039/D1SC01194D
Dong, J. J., Krasnova, L., Finn, M. G. & Sharpless, K. B. Sulfur(VI) fluoride exchange (SuFEx): another good reaction for click chemistry. Angew. Chem. Int. Ed. 53, 9430–9448 (2014).
doi: 10.1002/anie.201309399
Zheng, Q. H. et al. SuFEx-enabled, agnostic discovery of covalent inhibitors of human neutrophil elastase. Proc. Natl Acad. Sci. USA 116, 18808–18814 (2019).
pubmed: 31484779 pmcid: 6754619 doi: 10.1073/pnas.1909972116
Morgan, B. P. & Harris, C. L. Complement, a target for therapy in inflammatory and degenerative diseases. Nat. Rev. Drug Discov. 14, 857–877 (2015).
pubmed: 26493766 pmcid: 7098197 doi: 10.1038/nrd4657
Hamady, M., Walker, J. J., Harris, J. K., Gold, N. J. & Knight, R. Error-correcting barcoded primers for pyrosequencing hundreds of samples in multiplex. Nat. Methods 5, 235–237 (2008).
pubmed: 18264105 pmcid: 3439997 doi: 10.1038/nmeth.1184
Liu, X. et al. Neutralizing aptamers block S/RBD-ACE2 interactions and prevent host cell infection. Angew. Chem. Int. Ed. 60, 10273–10278 (2021).
doi: 10.1002/anie.202100345
Peinetti, A. S. et al. Direct detection of human adenovirus or SARS-CoV-2 with ability to inform infectivity using DNA aptamer-nanopore sensors. Sci. Adv. 7, eabh2848 (2021).
pubmed: 34550739 pmcid: 8457657 doi: 10.1126/sciadv.abh2848
Schmitz, A. et al. A SARS-CoV-2 spike binding DNA aptamer that inhibits pseudovirus infection by an RBD-independent mechanism. Angew. Chem. Int. Ed. 60, 10279–10285 (2021).
doi: 10.1002/anie.202100316
Zhang, Z. et al. High-affinity dimeric aptamers enable the rapid electrochemical detection of wild-type and B.1.1.7 SARS-CoV-2 in unprocessed saliva. Angew. Chem. Int. Ed. 60, 24266–24274 (2021).
doi: 10.1002/anie.202110819
Romaniuk, P. J. & Eckstein, F. A study of the mechanism of T4 DNA polymerase with diastereomeric phosphorothioate analogs of deoxyadenosine triphosphate. J. Biol. Chem. 257, 7684–7688 (1982).
pubmed: 7045112 doi: 10.1016/S0021-9258(18)34435-1
Iwamoto, N. et al. Control of phosphorothioate stereochemistry substantially increases the efficacy of antisense oligonucleotides. Nat. Biotechnol. 35, 845–851 (2017).
pubmed: 28829437 doi: 10.1038/nbt.3948
Watanabe, Y., Allen, J. D., Wrapp, D., McLellan, J. S. & Crispin, M. Site-specific glycan analysis of the SARS-CoV-2 spike. Science 369, 330–333 (2020).
pubmed: 32366695 pmcid: 7199903 doi: 10.1126/science.abb9983
Wrobel, A. G. et al. SARS-CoV-2 and bat RaTG13 spike glycoprotein structures inform on virus evolution and furin-cleavage effects. Nat. Struct. Mol. Biol. 27, 763–767 (2020).
pubmed: 32647346 pmcid: 7610980 doi: 10.1038/s41594-020-0468-7
Xiong, X. L. et al. A thermostable, closed SARS-CoV-2 spike protein trimer. Nat. Struct. Mol. Biol. 27, 934–941 (2020).
pubmed: 32737467 pmcid: 7116388 doi: 10.1038/s41594-020-0478-5
Cueno, M. E. & Imai, K. Structural comparison of the SARS-CoV-2 spike protein relative to other human-infecting coronaviruses. Front. Med. 7, 594439 (2020).
doi: 10.3389/fmed.2020.594439
Mukherjee, H. et al. A study of the reactivity of S(VI)-F containing warheads with nucleophilic amino-acid side chains under physiological conditions. Org. Biomol. Chem. 15, 9685–9695 (2017).
pubmed: 29119993 doi: 10.1039/C7OB02028G
Nie, J. H. et al. Quantification of SARS-CoV-2 neutralizing antibody by a pseudotyped virus-based assay. Nat. Protoc. 15, 3699–3715 (2020).
pubmed: 32978602 doi: 10.1038/s41596-020-0394-5
Biesecker, G., Dihel, L., Enney, K. & Bendele, R. A. Derivation of RNA aptamer inhibitors of human complement C5. Immunopharmacology 42, 219–230 (1999).
pubmed: 10408383 doi: 10.1016/S0162-3109(99)00020-X
Sefah, K. et al. In vitro selection with artificial expanded genetic information systems. Proc. Natl Acad. Sci. USA 111, 1449–1454 (2014).
pubmed: 24379378 doi: 10.1073/pnas.1311778111
Shangguan, D. et al. Aptamers evolved from live cells as effective molecular probes for cancer study. Proc. Natl. Acad. Sci. USA. 103, 11838–11843 (2006).
pubmed: 16873550 pmcid: 1567664 doi: 10.1073/pnas.0602615103
Xiang, Y. NGS raw data of SuFEx in vitro selection. figshare https://doi.org/10.6084/m9.figshare.23259986.v1 (2023).

Auteurs

Zichen Qin (Z)

Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, China.

Kaining Zhang (K)

Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, China.

Ping He (P)

CAS Key Laboratory of Special Pathogens and Biosafety, Centre for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.

Xue Zhang (X)

School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, China.

Miao Xie (M)

School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, China.

Yucheng Fu (Y)

Department of Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Chunmei Gu (C)

Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, China.
Beijing Institute of Collaborative Innovation (BICI), Beijing, China.

Yiying Zhu (Y)

Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, China.

Aijun Tong (A)

Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, China.

Hongping Wei (H)

CAS Key Laboratory of Special Pathogens and Biosafety, Centre for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.

Chuan Zhang (C)

School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, China.

Yu Xiang (Y)

Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, China. xiang-yu@tsinghua.edu.cn.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH