Smart design of universally decorated nanoparticles for drug delivery applications driven by active transport.
Journal
The European physical journal. E, Soft matter
ISSN: 1292-895X
Titre abrégé: Eur Phys J E Soft Matter
Pays: France
ID NLM: 101126530
Informations de publication
Date de publication:
31 Aug 2023
31 Aug 2023
Historique:
received:
29
04
2023
accepted:
25
07
2023
medline:
4
9
2023
pubmed:
1
9
2023
entrez:
31
8
2023
Statut:
epublish
Résumé
Targeting the cell nucleus remains a challenge for drug delivery. Here, we present a universal platform for the smart design of nanoparticle (NP) decoration that is based on: (i) a spacer polymer, commonly biotin-polyethylene-glycol-thiol, whose grafting density and molecular weight can be tuned for optimized performance, and (ii) protein binding peptides, such as cell penetrating peptides (CPPs), cancer-targeting peptides, or nuclear localization signal (NLS) peptides, that are linked to the PEG free-end by universal chemistry. We manifested our platform with two different bromo-acetamide (Br-Ac) modified NLSs. We used cell extract-based and live cell assays to demonstrate the recruitment of dynein motor proteins, which drive the NP active transport toward the nucleus, and the enhancement of cellular and nuclear entry, manifesting the properties of NLS as a CPP. Our control of the NP decoration scheme, and the modularity of our platform, carry great advantages for nano-carrier design for drug delivery applications.
Identifiants
pubmed: 37653248
doi: 10.1140/epje/s10189-023-00331-5
pii: 10.1140/epje/s10189-023-00331-5
doi:
Substances chimiques
Kinesins
EC 3.6.4.4
Polyethylene Glycols
3WJQ0SDW1A
Polymers
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
74Subventions
Organisme : Ministry of Science, Technology and Space
ID : Focal Technological Area Program of the Israeli National Nanotechnology Initiative (INNI)
Informations de copyright
© 2023. The Author(s), under exclusive licence to EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature.
Références
W.H. De Jong, P.J. Borm, Drug delivery and nanoparticles: applications and hazards. Int. J. Nanomed. 3(2), 133 (2008)
doi: 10.2147/IJN.S596
J.K. Patra, G. Das, L.F. Fraceto, E.V.R. Campos, Rodriguez-Torres M. del Pilar, L.S. Acosta-Torres, L.A. Diaz-Torres, R. Grillo, M.K. Swamy, S. Sharma et al., Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnology 16(1), 1–33 (2018)
doi: 10.1186/s12951-018-0392-8
O.K. Nag, J.B. Delehanty, Active cellular and subcellular targeting of nanoparticles for drug delivery. Pharmaceutics 11(10), 543 (2019)
doi: 10.3390/pharmaceutics11100543
Y.-P. Chen, C.-T. Chen, T.-P. Liu, F.-C. Chien, S.-H. Wu, P. Chen, C.-Y. Mou, Catcher in the rel: nanoparticles-antibody conjugate as NF-[Formula: see text]B nuclear translocation blocker. Biomaterials 246, 119997 (2020)
doi: 10.1016/j.biomaterials.2020.119997
J.L. Vivero-Escoto, I.I. Slowing, B.G. Trewyn, V.S.-Y. Lin, Mesoporous silica nanoparticles for intracellular controlled drug delivery. Small 6(18), 1952–1967 (2010)
doi: 10.1002/smll.200901789
C.T. de Ilarduya, Y. Sun, N. Düzgüneş, Gene delivery by lipoplexes and polyplexes. Eur. J. Pharm. Sci. 40(3), 159–170 (2010)
doi: 10.1016/j.ejps.2010.03.019
G. Sarfati, T. Dvir, M. Elkabets, R.N. Apte, S. Cohen, Targeting of polymeric nanoparticles to lung metastases by surface-attachment of YIGSR peptide from laminin. Biomaterials 32(1), 152–161 (2011)
doi: 10.1016/j.biomaterials.2010.09.014
N. Nishiyama, K. Kataoka, Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol. Ther. 112(3), 630–648 (2006)
I. Cohen-Erez, H. Rapaport, Negatively charged polypeptide-peptide nanoparticles showing efficient drug delivery to the mitochondria. Colloids Surf. B 162, 186–192 (2018)
doi: 10.1016/j.colsurfb.2017.11.048
H. Tian, J. Chen, X. Chen, Nanoparticles for gene delivery. Small 9(12), 2034–2044 (2013)
doi: 10.1002/smll.201202485
S.C. McBain, H.H. Yiu, J. Dobson, Magnetic nanoparticles for gene and drug delivery. Int. J. Nanomed. 3(2), 169 (2008)
J. Panyam, V. Labhasetwar, Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv. Drug Deliv. Rev. 55(3), 329–347 (2003)
doi: 10.1016/S0169-409X(02)00228-4
T. Vangijzegem, D. Stanicki, S. Laurent, Magnetic iron oxide nanoparticles for drug delivery: applications and characteristics. Expert Opin. Drug Deliv. 16(1), 69–78 (2019)
doi: 10.1080/17425247.2019.1554647
V. Balan, I.A. Petrache, M.I. Popa, M. Butnaru, E. Barbu, J. Tsibouklis, L. Verestiuc, Biotinylated chitosan-based SPIONs with potential in blood-contacting applications. J. Nanoparticle Res. 14(2), 1–14 (2012)
doi: 10.1007/s11051-012-0730-y
P. Chandna, J.J. Khandare, E. Ber, L. Rodriguez-Rodriguez, T. Minko, Multifunctional tumor-targeted polymer-peptide-drug delivery system for treatment of primary and metastatic cancers. Pharm. Res. 27(11), 2296–2306 (2010)
doi: 10.1007/s11095-010-0235-2
H. Cohen, R. Levy, J. Gao, I. Fishbein, V. Kousaev, S. Sosnowski, S. Slomkowski, G. Golomb, Sustained delivery and expression of DNA encapsulated in polymeric nanoparticles. Gene Ther. 7(22), 1896–1905 (2000)
doi: 10.1038/sj.gt.3301318
Z. Cao, D. Li, J. Wang, M. Xiong, X. Yang, Direct nucleus-targeted drug delivery using cascade phe/photo dual-sensitive polymeric nanocarrier for cancer therapy. Small 15(36), 1902022 (2019)
doi: 10.1002/smll.201902022
Y. Luo, Q. Wang, Recent development of chitosan-based polyelectrolyte complexes with natural polysaccharides for drug delivery. Int. J. Biol. Macromol. 64, 353–367 (2014)
doi: 10.1016/j.ijbiomac.2013.12.017
M.T. de Pinho Favaro, U. Unzueta, M. de Cabo, A. Villaverde, N. Ferrer-Miralles, A.R. Azzoni, Intracellular trafficking of a dynein-based nanoparticle designed for gene delivery. Eur. J. Pharm. Sci. 112, 71–78 (2018)
doi: 10.1016/j.ejps.2017.11.002
R. Chintakunta, N. Buaron, N. Kahn, A. Moriah, R. Lifshiz, R. Goldbart, T. Traitel, B. Tyler, H. Brem, J. Kost, Synthesis, characterization, and self-assembly with plasmid DNA of a quaternary ammonium derivative of pectic galactan and its fluorescent labeling for bioimaging applications. Carbohyd. Polym. 150, 308–318 (2016)
doi: 10.1016/j.carbpol.2016.05.015
R. Sieradzki, T. Traitel, R. Goldbart, S. Geresh, J. Kost, Tailoring quaternized starch as a non-viral carrier for gene delivery applications. Polym. Adv. Technol. 25(5), 552–561 (2014)
doi: 10.1002/pat.3277
I. Dalmau-Mena, P. Del Pino, B. Pelaz, M.Á. Cuesta-Geijo, I. Galindo, M. Moros, M. Jesús, C. Alonso, Nanoparticles engineered to bind cellular motors for efficient delivery. J. Nanobiotechnology 16(1), 1–13 (2018)
doi: 10.1186/s12951-018-0354-1
R. Vankayala, C.-L. Kuo, K. Nuthalapati, C.-S. Chiang, K.C. Hwang, Nucleus-targeting gold nanoclusters for simultaneous in vivo fluorescence imaging, gene delivery, and NIR-light activated photodynamic therapy. Adv. Func. Mater. 25(37), 5934–5945 (2015)
doi: 10.1002/adfm.201502650
P. Ghosh, G. Han, M. De, C.K. Kim, V.M. Rotello, Gold nanoparticles in delivery applications. Adv. Drug Deliv. Rev. 60(11), 1307–1315 (2008)
doi: 10.1016/j.addr.2008.03.016
A. Khan, R. Rashid, G. Murtaza, A. Zahra, Gold nanoparticles: synthesis and applications in drug delivery. Trop. J. Pharm. Res. 13(7), 1169–1177 (2014)
doi: 10.4314/tjpr.v13i7.23
E. Korin, T. Bejerano, S. Cohen, Galnac bio-functionalization of nanoparticles assembled by electrostatic interactions improves siRNA targeting to the liver. J. Control. Release 266, 310–320 (2017)
doi: 10.1016/j.jconrel.2017.10.001
N.H. Abd Ellah, S.A. Abouelmagd, Surface functionalization of polymeric nanoparticles for tumor drug delivery: approaches and challenges. Expert Opin. Drug Deliv. 14(2), 201–214 (2017)
doi: 10.1080/17425247.2016.1213238
W. Yu, Y. Zhan, B. Xue, Y. Dong, Y. Wang, P. Jiang, A. Wang, Y. Sun, Y. Yang, Highly efficient cellular uptake of a cell-penetrating peptide (CPP) derived from the capsid protein of porcine circovirus type 2. J. Biol. Chem. 293(39), 15221–15232 (2018)
doi: 10.1074/jbc.RA118.004823
D. Derossi, A.H. Joliot, G. Chassaing, A. Prochiantz, The third helix of the antennapedia homeodomain translocates through biological membranes. J. Biol. Chem. 269(14), 10444–10450 (1994)
doi: 10.1016/S0021-9258(17)34080-2
B. Chen, Q. Liu, Y. Zhang, L. Xu, X. Fang, Transmembrane delivery of the cell-penetrating peptide conjugated semiconductor quantum dots. Langmuir 24(20), 11866–11871 (2008)
doi: 10.1021/la802048s
G. Ruan, A. Agrawal, A.I. Marcus, S. Nie, Imaging and tracking of tat peptide-conjugated quantum dots in living cells: new insights into nanoparticle uptake, intracellular transport, and vesicle shedding. J. Am. Chem. Soc. 129(47), 14759–14766 (2007)
doi: 10.1021/ja074936k
Q. He, X. Jiang, X. Zhou, J. Weng, Targeting cancers through TCR-peptide/MHC interactions. J. Hematol. Oncol 12(1), 1–17 (2019)
doi: 10.1186/s13045-019-0812-8
I. Gessner, I. Neundorf, Nanoparticles modified with cell-penetrating peptides: conjugation mechanisms, physicochemical properties, and application in cancer diagnosis and therapy. Int. J. Mol. Sci. 21(7), 2536 (2020)
doi: 10.3390/ijms21072536
M. Lindgren, M. Hällbrink, A. Prochiantz, Ü. Langel, Cell-penetrating peptides. Trends Pharmacol. Sci. 21(3), 99–103 (2000)
doi: 10.1016/S0165-6147(00)01447-4
E.L. Snyder, S.F. Dowdy, Cell penetrating peptides in drug delivery. Pharm. Res. 21(3), 389–393 (2004)
doi: 10.1023/B:PHAM.0000019289.61978.f5
D. Zhu, H. Yan, Z. Zhou, J. Tang, X. Liu, R. Hartmann, W.J. Parak, N. Feliu, Y. Shen, Detailed investigation on how the protein corona modulates the physicochemical properties and gene delivery of polyethylenimine (PEI) polyplexes. Biomater. Sci. 6(7), 1800–1817 (2018)
doi: 10.1039/C8BM00128F
A. Erazo-Oliveras, N. Muthukrishnan, R. Baker, T.-Y. Wang, J.-P. Pellois, Improving the endosomal escape of cell-penetrating peptides and their cargos: strategies and challenges. Pharmaceuticals 5(11), 1177–1209 (2012)
doi: 10.3390/ph5111177
E. Oh, J.B. Delehanty, K.E. Sapsford, K. Susumu, R. Goswami, J.B. Blanco-Canosa, P.E. Dawson, J. Granek, M. Shoff, Q. Zhang et al., Cellular uptake and fate of pegylated gold nanoparticles is dependent on both cell-penetration peptides and particle size. ACS Nano 5(8), 6434–6448 (2011)
doi: 10.1021/nn201624c
S. Modi, B.D. Anderson, Determination of drug release kinetics from nanoparticles: overcoming pitfalls of the dynamic dialysis method. Mol. Pharm. 10(8), 3076–3089 (2013)
doi: 10.1021/mp400154a
G. Tosi, L. Costantino, B. Ruozi, F. Forni, M.A. Vandelli, Polymeric nanoparticles for the drug delivery to the central nervous system. Expert Opin. Drug Deliv. 5(2), 155–174 (2008)
doi: 10.1517/17425247.5.2.155
B. Haley, E. Frenkel, Nanoparticles for drug delivery in cancer treatment, in Urologic Oncology: Seminars and original investigations, vol. 26 (Elsevier, 2008), pp. 57–64
S.P. Gross, M.A. Welte, S.M. Block, E.F. Wieschaus, Dynein-mediated cargo transport in vivo: a switch controls travel distance. J. Cell Biol. 148(5), 945–956 (2000)
doi: 10.1083/jcb.148.5.945
I. Neri, N. Kern, A. Parmeggiani, Modeling cytoskeletal traffic: an interplay between passive diffusion and active transport. Phys. Rev. Lett. 110(9), 098102 (2013)
doi: 10.1103/PhysRevLett.110.098102
J. Suh, D. Wirtz, J. Hanes, Efficient active transport of gene nanocarriers to the cell nucleus. Proc. Natl. Acad. Sci. 100(7), 3878–3882 (2003)
doi: 10.1073/pnas.0636277100
D. McDonald, M.A. Vodicka, G. Lucero, T.M. Svitkina, G.G. Borisy, M. Emerman, T.J. Hope, Visualization of the intracellular behavior of HIV in living cells. J. Cell Biol. 159(3), 441–452 (2002)
doi: 10.1083/jcb.200203150
B. Sodeik, Unchain my heart, baby let me go-the entry and intracellular transport of HIV. J. Cell Biol. 159(3), 393 (2002)
doi: 10.1083/jcb.200210024
K. Radtke, D. Kieneke, A. Wolfstein, K. Michael, W. Steffen, T. Scholz, A. Karger, B. Sodeik, Plus-and minus-end directed microtubule motors bind simultaneously to herpes simplex virus capsids using different inner tegument structures. PLoS Pathog. 6(7), e1000991 (2010)
doi: 10.1371/journal.ppat.1000991
R.P. Kulkarni, D.D. Wu, M.E. Davis, S.E. Fraser, Quantitating intracellular transport of polyplexes by spatio-temporal image correlation spectroscopy. Proc. Natl. Acad. Sci. 102(21), 7523–7528 (2005)
doi: 10.1073/pnas.0501950102
R.D. Vale, The molecular motor toolbox for intracellular transport. Cell 112(4), 467–480 (2003)
doi: 10.1016/S0092-8674(03)00111-9
G.A.C. Blood et al., Human immunodeficiency virus (HIV). Transfusion Med. Hemotherapy 43(3), 203 (2016)
doi: 10.1159/000445852
M.J. McConnell, M.J. Imperiale, Biology of adenovirus and its use as a vector for gene therapy. Hum. Gene Ther. 15(11), 1022–1033 (2004)
doi: 10.1089/hum.2004.15.1022
S.J. King, T.A. Schroer, Dynactin increases the processivity of the cytoplasmic dynein motor. Nat. Cell Biol. 2(1), 20–24 (2000)
doi: 10.1038/71338
K. Dohner, A. Wolfstein, U. Prank, C. Echeverri, D. Dujardin, R. Vallee, B. Sodeik, Function of dynein and dynactin in herpes simplex virus capsid transport. Mol. Biol. Cell 13(8), 2795–2809 (2002)
doi: 10.1091/mbc.01-07-0348
R. Tréhin, H.P. Merkle, Chances and pitfalls of cell penetrating peptides for cellular drug delivery. Eur. J. Pharm. Biopharm. 58(2), 209–223 (2004)
doi: 10.1016/j.ejpb.2004.02.018
C. Ciobanasu, U. Kubitscheck, Cell-penetrating peptides targeting and distorting biological membranes, in Surface and Interface Science: Volume 7: Liquid and Biological Interfaces, vol. 7 (2020), pp. 441–469
T. Kon, T. Oyama, R. Shimo-Kon, K. Imamula, T. Shima, K. Sutoh, G. Kurisu, The 2.8 å crystal structure of the dynein motor domain. Nature 484(7394), 345–350 (2012)
doi: 10.1038/nature10955
G. Cingolani, J. Bednenko, M.T. Gillespie, L. Gerace, Molecular basis for the recognition of a nonclassical nuclear localization signal by importin [Formula: see text]. Mol. Cell 10(6), 1345–1353 (2002)
doi: 10.1016/S1097-2765(02)00727-X
J. Scherer, R.B. Vallee, Adenovirus recruits dynein by an evolutionary novel mechanism involving direct binding to pH-primed hexon. Viruses 3(8), 1417–1431 (2011)
doi: 10.3390/v3081417
S.A. Kelkar, K.K. Pfister, R.G. Crystal, P.L. Leopold, Cytoplasmic dynein mediates adenovirus binding to microtubules. J. Virol. 78(18), 10122–10132 (2004)
doi: 10.1128/JVI.78.18.10122-10132.2004
K. Benihoud, P. Yeh, M. Perricaudet, Adenovirus vectors for gene delivery. Curr. Opin. Biotechnol. 10(5), 440–447 (1999)
doi: 10.1016/S0958-1669(99)00007-5
J. Scherer, J. Yi, R.B. Vallee, Role of cytoplasmic dynein and kinesins in adenovirus transport. FEBS Lett. 594(12), 1838–1847 (2020)
doi: 10.1002/1873-3468.13777
M.D. Knoll, C. Wonodi, Oxford–AstraZeneca COVID-19 vaccine efficacy. Lancet 397(10269), 72–74 (2021)
doi: 10.1016/S0140-6736(20)32623-4
E.H. Livingston, P.N. Malani, C.B. Creech, The Johnson & Johnson vaccine for COVID-19. JAMA 325(15), 1575–1575 (2021)
doi: 10.1001/jama.2021.2927
M.R. Holm, G.A. Poland, Critical aspects of packaging, storage, preparation, and administration of mRNA and adenovirus-vectored COVID-19 vaccines for optimal efficacy. Vaccine 39(3), 457 (2021)
doi: 10.1016/j.vaccine.2020.12.017
I. Jones, P. Roy, Sputnik V COVID-19 vaccine candidate appears safe and effective. Lancet 397(10275), 642–643 (2021)
doi: 10.1016/S0140-6736(21)00191-4
M. Hasanpourghadi, M. Novikov, H.C. Ertl, COVID-19 vaccines based on adenovirus vectors. Trends Biochem. Sci. 46(5), 429–430 (2021)
doi: 10.1016/j.tibs.2021.03.002
K. Lundstrom, Viral vectors for COVID-19 vaccine development. Viruses 13(2), 317 (2021)
doi: 10.3390/v13020317
S. Raha, T. Paunesku, G. Woloschak, Peptide-mediated cancer targeting of nanoconjugates. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnology 3(3), 269–281 (2011)
doi: 10.1002/wnan.121
G. Halbi, I. Fayer, D. Aranovich, S. Gat, S. Bar, V. Erukhimovitch, R. Granek, A. Bernheim-Groswasser, Nano-particles carried by multiple dynein motors self-regulate their number of actively participating motors. Int. J. Mol. Sci. 22(16), 8893 (2021)
doi: 10.3390/ijms22168893
M.-M. Fu, E.L. Holzbaur, JIP1 regulates the directionality of app axonal transport by coordinating kinesin and dynein motors. J. Cell Biol. 202(3), 495–508 (2013)
doi: 10.1083/jcb.201302078
D. Kalderon, B.L. Roberts, W.D. Richardson, A.E. Smith, A short amino acid sequence able to specify nuclear location. Cell 39(3), 499–509 (1984)
doi: 10.1016/0092-8674(84)90457-4
H.M. Johnson, P.S. Subramaniam, S. Olsnes, D.A. Jans, Trafficking and signaling pathways of nuclear localizing protein ligands and their receptors. BioEssays 26(9), 993–1004 (2004)
doi: 10.1002/bies.20086
S. Bondalapati, E. Ruvinov, O. Kryukov, S. Cohen, A. Brik, Rapid end-group modification of polysaccharides for biomaterial applications in regenerative medicine. Macromol. Rapid Commun. 35(20), 1754–1762 (2014)
doi: 10.1002/marc.201400354
D. Danino, A. Bernheim-Groswasser, Y. Talmon, Digital cryogenic transmission electron microscopy: an advanced tool for direct imaging of complex fluids. Colloids Surf. A 183, 113–122 (2001)
doi: 10.1016/S0927-7757(01)00543-X
Á.V. Delgado, F. González-Caballero, R. Hunter, L. Koopal, J. Lyklema, Measurement and interpretation of electrokinetic phenomena. J. Colloid Interface Sci. 309(2), 194–224 (2007)
doi: 10.1016/j.jcis.2006.12.075
K.A. Johnson, J.S. Wall, Structure and molecular weight of the dynein ATPase. J. Cell Biol. 96(3), 669–678 (1983)
doi: 10.1083/jcb.96.3.669
C. Stringer, T. Wang, M. Michaelos, M. Pachitariu, Cellpose: a generalist algorithm for cellular segmentation. Nat. Methods 18(1), 100–106 (2021)
doi: 10.1038/s41592-020-01018-x
G. Bradski, The openCV library. Dr. Dobb’s J. Softw. Tools Prof. Program. 25(11), 120–123 (2000)
S. Van der Walt, J.L. Schönberger, J. Nunez-Iglesias, F. Boulogne, J.D. Warner, N. Yager, E. Gouillart, T. Yu, scikit-image: image processing in python. PeerJ 2, e453 (2014)
doi: 10.7717/peerj.453
N. Contributors, napari: a multi-dimensional image viewer for python. Zenodo 3555620 (2019). https://doi.org/10.5281/zenod
P. Siman, O. Blatt, T. Moyal, T. Danieli, M. Lebendiker, H.A. Lashuel, A. Friedler, A. Brik, Chemical synthesis and expression of the HIV-1 rev protein. ChemBioChem 12(7), 1097–1104 (2011)
doi: 10.1002/cbic.201100033
A. Bernheim-Groswasser, S. Wiesner, R.M. Golsteyn, M.-F. Carlier, C. Sykes, The dynamics of actin-based motility depend on surface parameters. Nature 417(6886), 308–311 (2002)
doi: 10.1038/417308a
E.A. Bayer, M. Wilchek, Application of avidin-biotin technology to affinity-based separations. J. Chromatogr. A 510, 3–11 (1990)
doi: 10.1016/S0021-9673(01)93733-1
C. Rosano, P. Arosio, M. Bolognesi, The X-ray three-dimensional structure of avidin. Biomol. Eng. 16(1–4), 5–12 (1999)
doi: 10.1016/S1050-3862(99)00047-9
H. Lee, R.M. Venable, A.D. MacKerell Jr., R.W. Pastor, Molecular dynamics studies of polyethylene oxide and polyethylene glycol: hydrodynamic radius and shape anisotropy. Biophys. J . 95(4), 1590–1599 (2008)
doi: 10.1529/biophysj.108.133025
F. Kienberger, V.P. Pastushenko, G. Kada, H.J. Gruber, C. Riener, H. Schindler, P. Hinterdorfer, Static and dynamical properties of single poly (ethylene glycol) molecules investigated by force spectroscopy. Single Molecules 1(2), 123–128 (2000)
doi: 10.1002/1438-5171(200006)1:2<123::AID-SIMO123>3.0.CO;2-3
H. Dobrinski, M. Wilkens, W. Benecke, J. Binder, Flexible microfluidic-device-stamp-system with integrated electrical sensor for real time DNA detection, in 1st Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine and Biology. Proceedings (Cat. No. 00EX451). (IEEE, 2000), pp. 33–35
O. Garbuzenko, Y. Barenholz, A. Priev, Effect of grafted peg on liposome size and on compressibility and packing of lipid bilayer. Chem. Phys. Lipid. 135(2), 117–129 (2005)
doi: 10.1016/j.chemphyslip.2005.02.003
P. De Gennes, Model polymers at interfaces, in Physical Basis of Cell–Cell Adhesion (CRC Press, Boca Raton, 1988), pp. 39–60
A. Palm, Raman spectrum of polystyrene. J. Phys. Chem. 55(8), 1320–1324 (1951)
doi: 10.1021/j150491a005
M. Trokter, N. Mücke, T. Surrey, Reconstitution of the human cytoplasmic dynein complex. Proc. Natl. Acad. Sci. 109(51), 20895–20900 (2012)
doi: 10.1073/pnas.1210573110
S.L. Reck-Peterson, R.D. Vale, A. Gennerich, Motile properties of cytoplasmic dynein, in Handbook of Dynein (2012), pp. 145–172
M.M. Elshenawy, J.T. Canty, L. Oster, L.S. Ferro, Z. Zhou, S.C. Blanchard, A. Yildiz, Cargo adaptors regulate stepping and force generation of mammalian dynein-dynactin. Nat. Chem. Biol. 15(11), 1093–1101 (2019)
L. Urnavicius, C.K. Lau, M.M. Elshenawy, E. Morales-Rios, C. Motz, A. Yildiz, A.P. Carter, Cryo-EM shows how dynactin recruits two dyneins for faster movement. Nature 554(7691), 202–206 (2018)
P.A. Silver, How proteins enter the nucleus. Cell 64(3), 489–497 (1991)
doi: 10.1016/0092-8674(91)90233-O
D. Görlich, Transport into and out of the cell nucleus. EMBO J. 17(10), 2721–2727 (1998)
doi: 10.1093/emboj/17.10.2721
R. Wang, M.G. Brattain, The maximal size of protein to diffuse through the nuclear pore is larger than 60 kda. FEBS Lett. 581(17), 3164–3170 (2007)
doi: 10.1016/j.febslet.2007.05.082