Access to Chiral O,O-Acetals Enabled by Palladium-Catalyzed Asymmetric Addition of Oximes to Alkoxyallenes.
O,O-acetal
alkoxyallene
enantioselectivity
oxime
palladium
Journal
Chemistry (Weinheim an der Bergstrasse, Germany)
ISSN: 1521-3765
Titre abrégé: Chemistry
Pays: Germany
ID NLM: 9513783
Informations de publication
Date de publication:
21 Nov 2023
21 Nov 2023
Historique:
received:
13
06
2023
medline:
1
9
2023
pubmed:
1
9
2023
entrez:
31
8
2023
Statut:
ppublish
Résumé
Enantiomerically pure acyclic O,O-acetal compounds (up to 97 % ee) have been accessed through chemo-, regio- and enantioselective palladium-catalyzed addition of oximes to alkoxyallenes. DFT calculations support that a protonative hydropalladation pathway is favourable, in which the hydrogen bonding interaction between the amide group of the diphosphine ligand and the alkoxyallene is critical for the highly stereoselective formation of the dioxygenated stereogenic center.
Identifiants
pubmed: 37653541
doi: 10.1002/chem.202301883
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e202301883Subventions
Organisme : Innovative Research Group Project of the National Natural Science Foundation of China
ID : 21871132,21572098
Informations de copyright
© 2023 Wiley-VCH GmbH.
Références
M. Brito-Arias, in Synthesis and Characterization of Glycosides, Springer Nature Switzerland AG, 2022;
C. S. Bennett, Selective Glycosylations: Synthetic Methods and Catalysts, Wiley: Weinheim 2017;
Y. Yang, X. Zhang, B. Yu, Nat. Prod. Rep. 2015, 32, 1331-1355;
K. Toshima, K. Tatsuta, Chem. Rev. 1993, 93, 1503-1531.
I. Coric, S. Vellalath, S. Muller, X. Cheng, B. List, in Inventing Reactions, L. J. Gooβen, Ed. Springer-Verlag Berlin Heidelberg, 2013;
I. Coric, B. List, Nature 2012, 483, 315-319;
I. Coric, S. Vellalath, B. List, J. Am. Chem. Soc. 2010, 132, 8536-8537;
I. Coric, S. Muller, B. List, J. Am. Chem. Soc. 2010, 132, 17370-17373.
N. Krause, A. S. K. Hashmi, in Modern Allene Chemistry, Wiley: Weinheim, 2004;
S. Yu, S. Ma, Angew. Chem. Int. Ed. 2012, 51, 3074-3112;
P. Koschker, B. Breit, Acc. Chem. Res. 2016, 49, 1524-1536;
R. Blieck, M. Taillefer, F. Monnier, Chem. Rev. 2020, 120, 13545-13598;
J. L. Kennemur, R. Maji, M. J. Scharf, B. List, Chem. Rev. 2021, 121, 14649-14681.
B. M. Trost, C. Jakel, B. Plietker, J. Am. Chem. Soc. 2003, 125, 4438-4439;
H. Kim, Y. H. Rhee, J. Am. Chem. Soc. 2012, 134, 4011-4014;
W. Lim, J. Kim, Y. H. Rhee, J. Am. Chem. Soc. 2014, 136, 13618-13621;
M. Kim, S. Kang, Y. H. Rhee, Angew. Chem. Int. Ed. 2016, 55, 9733-9737;
H. Zhou, Z. Wei, J. Zhang, H. Yang, C. Xu, G, Jiang, Angew. Chem. Int. Ed. 2017, 56, 1077-1081;
J. Lee, S. Kang, J. Kim, D. Moon, Y. H. Rhee, Angew. Chem. Int. Ed. 2019, 58, 628-631;
J. Lee, J. Kang, S. Lee, Y. H. Rhee, Angew. Chem. Int. Ed. 2020, 59, 2349-2353;
M. Zhu, Q. Zhang, W. Zi, Angew. Chem. Int. Ed. 2021, 60, 6545-6552;
D.-J. Jang, S. Lee, J. Lee, D. Moon, Y. H. Rhee, Angew. Chem. Int. Ed. 2021, 60, 22166-22171;
K. Seo, S. H. Jang, Y. H. Rhee, Angew. Chem. Int. Ed. 2022, 61, e202112524;
Z. Yang, J. Wang, Angew. Chem. Int. Ed. 2021, 60, 27288-27292;
H.-C. Lin, G. J. Knox, C. M. Pearson, C. Yang, V. Carta, T. N. Snaddon, Angew. Chem. Int. Ed. 2022, 61, e202201753;
M. Zhu, P. Wang, Q. Zhang, W. Tang, W. Zi, Angew. Chem. Int. Ed. 2022, 61, e202207621.
D. M. Roll, C. W. J. Chang, P. J. Scheuer, G. A. Gray, J. N. Shoolery, G. K. Matsumoto, G. D. Van Duyne, J. Clardy, J. Am. Chem. Soc. 1985, 107, 2916-2920;
S. Liu, X. Fu, F. J. Schmitz, M. Kelly-Borges, J. Nat. Prod. 1997, 60, 614-615;
X. Yang, R. A. Davis, M. S. Buchanan, S. Duffy, V. M. Avery, D. Camp, R. J. Quinn, J. Nat. Prod. 2010, 73, 985-987;
S.-i. Kurimoto, T. Ohno, R. Hokari, A. Ishiyama, M. Iwatsuki, S. Omura, J. Kobayashi, T. Kubota, Mar. Drugs 2018, 16, 463-469;
W.-H. Jiao, J. Li, M.-M. Zhang, J. Cui, Y.-H. Gui, Y. Zhang, J.-Y. Li, K.-C. Liu, H.-W. Li, Org. Lett. 2019, 21, 6190-6193;
J. Paciorek, D. Hofler, K. R. Sokol, K. Wurst, T. Magauer, J. Am. Chem. Soc. 2022, 144, 19704-19708.
Z. Rappoport, J. F. Liebman, in The Chemistry of Hydroxyamines, Oximes and Hydroxamic Acids, John Wiley & Sons Ltd., England, 2009;
D. S. Bolotin, N. A. Bokach, M. Y. Demakova, V. Y. Kukushkin, Chem. Rev. 2017, 117, 13039-13122;
H. Miyabe, K. Yoshida, V. K. Reddy, A. Matsumura, Y. Takemoto, J. Org. Chem. 2005, 70, 5630-5635;
Z. Li, J. Zhao, B. Sun, T. Zhou, M. Liu, S. Liu, M. Zhang, Q. Zhang, J. Am. Chem. Soc. 2017, 139, 11702-11705;
L. Wang, K. Zhang, Y. Wang, W. Li, M. Chen, J. Zhang, Angew. Chem. Int. Ed. 2020, 59, 4421-4427;
S.-Q. Yang, A.-J. Han, Y. Liu, X.-Y. Tang, G.-Q. Lin, Z.-T. He, J. Am. Chem. Soc. 2023, 145, 3915-3925.
Y.-H. Wang, B. Breit, Chem. Commun. 2019, 55, 7619-7622.
T. Sandmeier, E. M. Carreira, Angew. Chem. Int. Ed. 2021, 60, 9913-9918;
T. Sandmeier, E. M. Carreira, Org. Lett. 2021, 23, 2643-2647.
Z. Qi, S. Wang, Org. Lett. 2021, 23, 8549-8553;
Z. Qi, S. Wang, Org. Lett. 2021, 23, 5777-5781;
C. Wang, Q. Cui, Z. Zhang, Z.-J. Yao, S. Wang, Z.-X. Yu, Chem. Eur. J. 2019, 25, 9821-9826.
Deposition Number 2161221 (S-18) contains the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
S. Emamian, T. Lu, H. Kruse, H. Emamian, J. Comput. Chem. 2019, 40, 2868-2881.
As one reviewer of this manuscript suggested, we attempted and carried out an enantioconvergent oxime addition of racemic 1,3-disubstituted alkoxyallene A-21 (for details, see the Supporting Information).
X. Zhang, T. Rovis, J. Am. Chem. Soc. 2021, 143, 21211-21217.
L. Jiang, T. Jia, M. Wang, J. Liao, P. Cao, Org. Lett. 2015, 17, 1070-1073.
G. Sheldrick, Acta Crystallogr. Sect. A 2015, 71, 3-8.
G. Sheldrick, Acta Crystallogr. Sect. C 2015, 71, 3-8.
P. J. Stevens, F. J. Devlin, C. F. Chablowski, M. J. Frisch, J. Phys. Chem. 1994, 98, 11623-11627.
S. Grimme, S. Ehrlich, L. Goerigk, J. Comb. Chem. 2011, 32, 1456-1465.
Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Peterson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Lzmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, Jr. J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Lyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian, Inc. Wallingford CT, 2016.
W. J. Hehre, R. Ditchfield, J. A. Pople, J. Chem. Phys. 1972, 56, 2257-2261.
M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. DeFrees, J. A. Pople, J. Chem. Phys. 1982, 77,3654-3665.
T. Clark, J. Chandrasekhar, P. v. R. Schleyer, J. Comb. Chem. 1983, 4, 294-301.
M. Dolg, U. Wedig, H. Stoll, H. Preuss, J. Chem. Phys. 1987, 86, 866-872.
T. Lu, and Q. Chen, Comput. Theor. Chem. 2021, 1200, 113249-113256.
K. Fukui, J. Phys. Chem. 1970, 74, 4161-4163.
F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297-3305.
F. Weigend, Phys. Chem. Chem. Phys. 2006, 8, 1057-1065.
A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378-6396.
CYLview, 1.0b; C. Y. Legault, Université de Sherbrooke, 2009 (http://www.cylview.org).
U. C. Singh, P. A. Kollman, J. Comb. Chem. 1984, 5, 129-145.
J. Zhang, T. Lu, Phys. Chem. Chem. Phys. 2021, 23, 20323-20328.
T. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580-592.