Machine learning to predict risk for community-onset Staphylococcus aureus infections in children living in southeastern United States.
Journal
PloS one
ISSN: 1932-6203
Titre abrégé: PLoS One
Pays: United States
ID NLM: 101285081
Informations de publication
Date de publication:
2023
2023
Historique:
received:
01
10
2022
accepted:
07
08
2023
medline:
4
9
2023
pubmed:
1
9
2023
entrez:
1
9
2023
Statut:
epublish
Résumé
Staphylococcus aureus (S. aureus) is known to cause human infections and since the late 1990s, community-onset antibiotic resistant infections (methicillin resistant S. aureus (MRSA)) continue to cause significant infections in the United States. Skin and soft tissue infections (SSTIs) still account for the majority of these in the outpatient setting. Machine learning can predict the location-based risks for community-level S. aureus infections. Multi-year (2002-2016) electronic health records of children <19 years old with S. aureus infections were queried for patient level data for demographic, clinical, and laboratory information. Area level data (Block group) was abstracted from U.S. Census data. A machine learning ecological niche model, maximum entropy (MaxEnt), was applied to assess model performance of specific place-based factors (determined a priori) associated with S. aureus infections; analyses were structured to compare methicillin resistant (MRSA) against methicillin sensitive S. aureus (MSSA) infections. Differences in rates of MRSA and MSSA infections were determined by comparing those which occurred in the early phase (2002-2005) and those in the later phase (2006-2016). Multi-level modeling was applied to identify risks factors for S. aureus infections. Among 16,124 unique patients with community-onset MRSA and MSSA, majority occurred in the most densely populated neighborhoods of Atlanta's metropolitan area. MaxEnt model performance showed the training AUC ranged from 0.771 to 0.824, while the testing AUC ranged from 0.769 to 0.839. Population density was the area variable which contributed the most in predicting S. aureus disease (stratified by CO-MRSA and CO-MSSA) across early and late periods. Race contributed more to CO-MRSA prediction models during the early and late periods than for CO-MSSA. Machine learning accurately predicts which densely populated areas are at highest and lowest risk for community-onset S. aureus infections over a 14-year time span.
Identifiants
pubmed: 37656705
doi: 10.1371/journal.pone.0290375
pii: PONE-D-22-25603
pmc: PMC10473480
doi:
Types de publication
Journal Article
Research Support, U.S. Gov't, P.H.S.
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
e0290375Subventions
Organisme : NCATS NIH HHS
ID : UL1 TR002378
Pays : United States
Organisme : NICHD NIH HHS
ID : R01 HD092580
Pays : United States
Organisme : NIEHS NIH HHS
ID : R01 ES033530
Pays : United States
Organisme : NIAID NIH HHS
ID : UG3 AI176853
Pays : United States
Organisme : NIAID NIH HHS
ID : U01 AI148069
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI149527
Pays : United States
Organisme : NIEHS NIH HHS
ID : P30 ES019776
Pays : United States
Organisme : NIMHD NIH HHS
ID : R21 MD017943
Pays : United States
Organisme : NCIPC CDC HHS
ID : R49 CE003072
Pays : United States
Organisme : NLM NIH HHS
ID : G08 LM013190
Pays : United States
Informations de copyright
Copyright: © 2023 Lin et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Déclaration de conflit d'intérêts
The authors have declared that no competing interests exist.
Références
Clin Infect Dis. 2019 Jan 18;68(3):453-459
pubmed: 29912305
Clin Infect Dis. 2008 Jun 1;46 Suppl 5:S344-9
pubmed: 18462089
Int J Environ Res Public Health. 2016 Jun 16;13(6):
pubmed: 27322296
Parasitol Res. 2018 Nov;117(11):3507-3517
pubmed: 30120589
Arch Intern Med. 2007 May 28;167(10):1026-33
pubmed: 17533205
PLoS One. 2018 Jan 31;13(1):e0190824
pubmed: 29385158
Clin Microbiol Rev. 2010 Jul;23(3):616-87
pubmed: 20610826
Infect Control Hosp Epidemiol. 2017 Oct;38(10):1226-1234
pubmed: 28903801
West J Emerg Med. 2017 Feb;18(2):201-212
pubmed: 28210352
Spat Spatiotemporal Epidemiol. 2011 Sep;2(3):125-33
pubmed: 22748172
BMC Infect Dis. 2016 Jul 22;16:343
pubmed: 27448599
BMC Infect Dis. 2019 May 9;19(1):396
pubmed: 31072308
Ann Emerg Med. 2008 Mar;51(3):291-8
pubmed: 18222564
BMC Public Health. 2019 Jul 9;19(1):914
pubmed: 31288765
JAMA. 1998 Feb 25;279(8):593-8
pubmed: 9486753
Int J Environ Res Public Health. 2018 Jan 23;15(2):
pubmed: 29360797
BMC Infect Dis. 2019 Feb 18;19(1):170
pubmed: 30777016
MMWR Morb Mortal Wkly Rep. 2019 Mar 08;68(9):214-219
pubmed: 30845118
PLoS One. 2018 Oct 3;13(10):e0204233
pubmed: 30281634
Clin Infect Dis. 2017 Mar 1;64(5):597-604
pubmed: 28362911
Int J Infect Dis. 2018 Dec;77:96-104
pubmed: 30218814
Can Fam Physician. 2017 Jul;63(7):512-520
pubmed: 28701438