Chaperone Mimetic Strategy for Achieving Organic Room-Temperature Phosphorescence based on Confined Supramolecular Assembly.
adaptive cavities
chaperone mimetic host
conformational change
room-temperature phosphorescence
structural descriptors
Journal
Small (Weinheim an der Bergstrasse, Germany)
ISSN: 1613-6829
Titre abrégé: Small
Pays: Germany
ID NLM: 101235338
Informations de publication
Date de publication:
01 Sep 2023
01 Sep 2023
Historique:
revised:
21
08
2023
received:
07
08
2023
medline:
2
9
2023
pubmed:
2
9
2023
entrez:
2
9
2023
Statut:
aheadofprint
Résumé
The development of organic materials that deliver room-temperature phosphorescence (RTP) is highly interesting for potential applications such as anticounterfeiting, optoelectronic devices, and bioimaging. Herein, a molecular chaperone strategy for controlling isolated chromophores to achieve high-performance RTP is demonstrated. Systematic experiments coupled with theoretical evidence reveal that the host plays a similar role as a molecular chaperone that anchors the chromophores for limited nonradiative decay and directs the proper conformation of guests for enhanced intersystem crossing through noncovalent interactions. For deduction of structure-property relationships, various structure-related descriptors that correlate with the RTP performance are identified, thus offering the possibility to quantitatively design and predict the phosphorescent behaviors of these systems. Furthermore, application in thermal printing is well realized for these RTP materials. The present work discloses an effective strategy for efficient construction of organic RTP materials, delivering a modular model which is expected to help expand the diversity of desirable RTP systems.
Identifiants
pubmed: 37658491
doi: 10.1002/smll.202306746
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e2306746Subventions
Organisme : National Natural Science Foundation of China
ID : 22271154
Organisme : National Natural Science Foundation of China
ID : M-0411
Organisme : Natural Science Foundation of Jiangsu Province
ID : BK20211179
Organisme : China Postdoctoral Science Foundation
ID : 2022M721601
Organisme : Fundamental Research Funds for the Central Universities
ID : NG2022003
Organisme : Fundamental Research Funds for the Central Universities
ID : NS2021040
Informations de copyright
© 2023 Wiley-VCH GmbH.
Références
a) X. Wang, H. Ma, M. Gu, C. Lin, N. Gan, Z. Xie, H. Wang, L. Bian, L. Fu, S. Cai, Z. Chi, W. Yao, Z. An, H. Shi, W. Huang, Chem. Mater. 2019, 31, 5584;
b) Z. Xie, X. Zhang, H. Wang, C. Huang, H. Sun, M. Dong, L. Ji, Z. An, T. Yu, W. Huang, Nat. Commun. 2021, 12, 3522.
a) M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, S. R. Forrest, Nature 1998, 395, 151;
b) K. Jinnai, R. Kabe, Z. Lin, C. Adachi, Nat. Mater. 2022, 21, 338;
c) W. Ye, H. Ma, H. Shi, H. Wang, A. Lv, L. Bian, M. Zhang, C. Ma, K. Ling, M. Gu, Y. Mao, X. Yao, C. Gao, K. Shen, W. Jia, J. Zhi, S. Cai, Z. Song, J. Li, Y. Zhang, S. Lu, K. Liu, C. Dong, Q. Wang, Y. Zhou, W. Yao, Y. Zhang, H. Zhang, Z. Zhang, X. Hang, et al., Nat. Mater. 2021, 20, 1539;
d) X. Wu, C.-Y. Huang, D.-G. Chen, D. Liu, C.-C. Wu, K.-J. Chou, B. Zhang, Y. Wang, Y. Liu, E. Y. Li, W. Zhu, P.-T. Chou, Nat. Commun. 2020, 11, 2145.
a) A. Nicol, R. T. K. Kwok, C. Chen, W. Zhao, M. Chen, J. Qu, B. Z. Tang, J. Am. Chem. Soc. 2017, 139, 14792;
b) X.-F. Wang, H. Xiao, P.-Z. Chen, Q.-Z. Yang, B. Chen, C.-H. Tung, Y.-Z. Chen, L.-Z. Wu, J. Am. Chem. Soc. 2019, 141, 5045;
c) J. Yang, Y. Zhang, X. Wu, W. Dai, D. Chen, J. Shi, B. Tong, Q. Peng, H. Xie, Z. Cai, Y. Dong, X. Zhang, Nat. Commun. 2021, 12, 4883;
d) H.-J. Yu, Q. Zhou, X. Dai, F.-F. Shen, Y.-M. Zhang, X. Xu, Y. Liu, J. Am. Chem. Soc. 2021, 143, 13887;
e) X. Zhen, Y. Tao, Z. An, P. Chen, C. Xu, R. Chen, W. Huang, K. Pu, Adv. Mater. 2017, 29, 1606665.
a) L. Gu, W. Ye, X. Liang, A. Lv, H. Ma, M. Singh, W. Jia, Z. Shen, Y. Guo, Y. Gao, H. Chen, D. Wang, Y. Wu, J. Liu, H. Wang, Y. X. Zheng, Z. An, W. Huang, Y. Zhao, J. Am. Chem. Soc. 2021, 143, 18527;
b) Y. Lei, W. Dai, J. Guan, S. Guo, F. Ren, Y. Zhou, J. Shi, B. Tong, Z. Cai, J. Zheng, Y. Dong, Angew. Chem., Int. Ed. 2020, 59, 16054;
c) X. Liang, T.-T. Liu, Z.-P. Yan, Y. Zhou, J. Su, X.-F. Luo, Z.-G. Wu, Y. Wang, Y.-X. Zheng, J.-L. Zuo, Angew. Chem., Int. Ed. 2019, 58, 17220;
d) J. Wei, B. Liang, R. Duan, Z. Cheng, C. Li, T. Zhou, Y. Yi, Y. Wang, Angew. Chem., Int. Ed. 2016, 55, 15589.
a) Z. He, W. Zhao, J. W. Y. Lam, Q. Peng, H. Ma, G. Liang, Z. Shuai, B. Z. Tang, Nat. Commun. 2017, 8, 416;
b) Q. Li, M. Zhou, M. Yang, Q. Yang, Z. Zhang, J. Shi, Nat. Commun. 2018, 9, 734;
c) H. Peng, G. Xie, Y. Cao, L. Zhang, X. Yan, X. Zhang, S. Miao, Y. Tao, H. Li, C. Zheng, W. Huang, R. Chen, Sci. Adv. 2022, 8, eabk2925;
d) B. Zhou, D. Yan, Adv. Funct. Mater. 2019, 29, 1807599;
e) R. Tian, S. Gao, K. Li, C. Lu, Nat. Commun. 2023, 14, 4720;
f) D. Li, Z. Liu, M. Fang, J. Yang, B. Z. Tang, Z. Li, ACS Nano 2023, 17, 12895.
a) S. Guo, W. Dai, X. Chen, Y. Lei, J. Shi, B. Tong, Z. Cai, Y. Dong, ACS Mater. Lett. 2021, 3, 379;
b) Y. Li, G. V. Baryshnikov, F. Siddique, P. Wei, H. Wu, T. Yi, Angew. Chem., Int. Ed. 2022, 61, e202213051;
c) G. Qu, Y. Zhang, X. Ma, Chin. Chem. Lett. 2019, 30, 1809;
d) F. Xiao, H. Gao, Y. Lei, W. Dai, M. Liu, X. Zheng, Z. Cai, X. Huang, H. Wu, D. Ding, Nat. Commun. 2022, 13, 186;
e) X. Yan, H. Peng, Y. Xiang, J. Wang, L. Yu, Y. Tao, H. Li, W. Huang, R. Chen, Small 2022, 18, 2104514;
f) W. Zhu, H. Xing, E. Li, H. Zhu, F. Huang, Macromolecules 2022, 55, 9802;
g) Y. Zhai, S. Li, J. Li, S. Liu, T. D. James, J. L. Sessler, Z. Chen, Nat. Commun. 2022, 14, 2614;
h) H. Zhu, J. Liu, Y. Wu, L. Wang, H. Zhang, Q. Li, H. Wang, H. Hao, J. L. Sessler, F. Huang, J. Am. Chem. Soc. 2023, 145, 11130.
a) C. Chen, Z. Chi, K. C. Chong, A. S. Batsanov, Z. Yang, Z. Mao, Z. Yang, B. Liu, Nat. Mater. 2021, 20, 175;
b) S. M. A. Fateminia, Z. Mao, S. Xu, Z. Yang, Z. Chi, B. Liu, Angew. Chem., Int. Ed. 2017, 56, 12160;
c) X. Ma, C. Xu, J. Wang, H. Tian, Angew. Chem., Int. Ed. 2018, 57, 10854;
d) Z. Wang, T. Li, B. Ding, X. Ma, Chin. Chem. Lett. 2020, 31, 2929;
e) X. Yu, S. Wan, W. Wu, C. Yang, W. Lu, Chem. Commun. 2022, 58, 6284;
f) X. Zhang, J. Liu, B. Chen, X. He, X. Li, P. Wei, P. F. Gao, G. Zhang, J. W. Y. Lam, B. Z. Tang, Matter 2022, 5, 3499;
g) W. Zhao, Z. He, B. Z. Tang, Nat. Rev. Mater. 2020, 5, 869.
O. Bolton, K. Lee, H. J. Kim, K. Y. Lin, J. Kim, Nat. Chem. 2011, 3, 205.
R. Kabe, C. Adachi, Nature 2017, 550, 384.
Y. Wang, J. Yang, M. Fang, Y. Yu, B. Zou, L. Wang, Y. Tian, J. Cheng, B. Z. Tang, Z. Li, Matter 2020, 3, 449.
a) S. Garain, B. C. Garain, M. Eswaramoorthy, S. K. Pati, S. J. George, Angew. Chem., Int. Ed. 2021, 60, 19720;
b) M. Huo, X.-Y. Dai, Y. Liu, Small 2022, 18, 2104514;
c) J. Wang, Z. Huang, X. Ma, H. Tian, Angew. Chem., Int. Ed. 2020, 59, 9928;
d) Z.-Y. Zhang, Y. Chen, Y. Liu, Angew. Chem., Int. Ed. 2019, 58, 6028.
L. Bian, H. Shi, X. Wang, K. Ling, H. Ma, M. Li, Z. Cheng, C. Ma, S. Cai, Q. Wu, N. Gan, X. Xu, Z. An, W. Huang, J. Am. Chem. Soc. 2018, 140, 10734.
a) F. U. Hartl, M. Hayer-Hartl, Science 2002, 295, 1852;
b) J. L. Johnson, K. C. Entzminger, J. Hyun, S. Kalyoncu, D. P. Heaner, Jr., I. A. Morales, A. Sheppard, J. C. Gumbart, J. A. Maynard, R. L. Lieberman, Acta Crystallogr. 2015, 71, 896;
c) Y. E. Kim, M. S. Hipp, A. Bracher, M. Hayer-Hartl, F. U. Hartl, Annu. Rev. Biochem. 2013, 82, 323.
a) N. Kameta, M. Masuda, T. Shimizu, ACS Nano 2012, 6, 5249;
b) F.-H. Ma, C. Li, Y. Liu, L. Shi, Adv. Mater. 2020, 32, 1805945.
M. S. Felix Krupp, W. Frey, C. Richert, Angew. Chem., Int. Ed. 2020, 59, 15875.
Y. Wang, J. Yang, Y. Gong, M. Fang, Z. Li, B. Z. Tang, SmartMat 2020, 1, e1006.
W. Li, Z. Li, C. Si, M. Y. Wong, K. Jinnai, A. K. Gupta, R. Kabe, C. Adachi, W. Huang, E. Zysman-Colman, I. D. W. Samuel, Adv. Mater. 2020, 32, 2003911.
a) H. Ma, W. Shi, J. Ren, W. Li, Q. Peng, Z. Shuai, J. Phys. Chem. Lett. 2016, 7, 2893;
b) J. Ren, Y. Wang, Y. Tian, Z. Liu, X. Xiao, J. Yang, M. Fang, Z. Li, Angew. Chem., Int. Ed. 2021, 60, 12335;
c) L. Gu, H. Shi, M. Gu, K. Ling, H. Ma, S. Cai, L. Song, C. Ma, H. Li, G. Xing, X. Hang, J. Li, Y. Gao, W. Yao, Z. Shuai, Z. An, X. Liu, W. Huang, Angew. Chem., Int. Ed. 2018, 57, 8425;
d) H. Li, H. Li, W. Wang, Y. Tao, S. Wang, Q. Yang, Y. Jiang, C. Zheng, W. Huang, R. Chen, Angew. Chem., Int. Ed. 2020, 59, 4756.
X. Wu, B.-K. Su, D.-G. Chen, D. Liu, C.-C. Wu, Z.-X. Huang, T.-C. Lin, C.-H. Wu, M. Zhu, E. Y. Li, W.-Y. Hung, W. Zhu, P.-T. Chou, Nat. Photonics 2021, 15, 780.
a) K. Wang, J. H. Jordan, X. Y. Hu, L. Wang, Angew. Chem., Int. Ed. 2020, 59, 13712;
b) K. Wang, K. Velmurugan, B. Li, X. Y. Hu, Chem. Commun. 2021, 57, 13641.
Y. Lei, J. Yang, W. Dai, Y. Lan, J. Yang, X. Zheng, J. Shi, B. Tong, Z. Cai, Y. Dong, Chem. Sci. 2021, 12, 6518.
a) M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., et al., Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford, CT, 2016;
b) T. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580;
c) F. Neese, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2017, 8, e1327.
a) M. M. Smulders, S. Zarra, J. R. Nitschke, J. Am. Chem. Soc. 2013, 135, 7039;
b) H. Yao, H. Ke, X. Zhang, S. J. Pan, M. S. Li, L. P. Yang, G. Schreckenbach, W. Jiang, J. Am. Chem. Soc. 2018, 140, 13466.
a) F. U. Hartl, A. Bracher, M. Hayer-Hartl, Nature 2011, 475, 324;
b) R. J. Ellis, Philos. Trans. R. Soc., B 2013, 368, 20110398.