Use of gadolinium-based contrast agents in multiple sclerosis: a review by the ESMRMB-GREC and ESNR Multiple Sclerosis Working Group.

Gadolinium Magnetic resonance imaging Multiple sclerosis Practice guideline Safety

Journal

European radiology
ISSN: 1432-1084
Titre abrégé: Eur Radiol
Pays: Germany
ID NLM: 9114774

Informations de publication

Date de publication:
02 Sep 2023
Historique:
received: 24 04 2023
accepted: 12 07 2023
revised: 06 07 2023
pubmed: 4 9 2023
medline: 4 9 2023
entrez: 2 9 2023
Statut: aheadofprint

Résumé

Magnetic resonance imaging (MRI) is the most sensitive technique for detecting inflammatory demyelinating lesions in multiple sclerosis (MS) and plays a crucial role in diagnosis and monitoring treatment effectiveness, and for predicting the disease course. In clinical practice, detection of MS lesions is mainly based on T2-weighted and contrast-enhanced T1-weighted sequences. Contrast-enhancing lesions (CEL) on T1-weighted sequences are related to (sub)acute inflammation, while new or enlarging T2 lesions reflect the permanent footprint from a previous acute inflammatory demyelinating event. These two types of MRI features provide redundant information, at least in regular monitoring of the disease. Due to the concern of gadolinium deposition after repetitive injections of gadolinium-based contrast agents (GBCAs), scientific organizations and regulatory agencies in Europe and North America have proposed that these contrast agents should be administered only if clinically necessary. In this article, we provide data on the mode of action of GBCAs in MS, the indications of the use of these agents in clinical practice, their value in MS for diagnostic, prognostic, and monitoring purposes, and their use in specific populations (children, pregnant women, and breast-feeders). We discuss imaging strategies that achieve the highest sensitivity for detecting CELs in compliance with the safety regulations established by different regulatory agencies. Finally, we will briefly discuss some alternatives to the use of GBCA for detecting blood-brain barrier disruption in MS lesions. CLINICAL RELEVANCE STATEMENT: Although use of GBCA at diagnostic workup of suspected MS is highly valuable for diagnostic and prognostic purposes, their use in routine monitoring is not mandatory and must be reduced, as detection of disease activity can be based on the identification of new or enlarging lesions on T2-weighted images. KEY POINTS: • Both the EMA and the FDA state that the use of GBCA in medicine should be restricted to clinical scenarios in which the additional information offered by the contrast agent is required. • The use of GBCA is generally recommended in the diagnostic workup in subjects with suspected MS and is generally not necessary for routine monitoring in clinical practice. • Alternative MRI-based approaches for detecting acute focal inflammatory MS lesions are not yet ready to be used in clinical practice.

Identifiants

pubmed: 37658891
doi: 10.1007/s00330-023-10151-y
pii: 10.1007/s00330-023-10151-y
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Commentaires et corrections

Type : CommentIn

Informations de copyright

© 2023. The Author(s), under exclusive licence to European Society of Radiology.

Références

Wattjes MP, Ciccarelli O, Reich DS et al (2021) 2021 MAGNIMS-CMSC-NAIMS consensus recommendations on the use of MRI in patients with multiple sclerosis. Lancet Neurol 20:653–670
pubmed: 34139157 doi: 10.1016/S1474-4422(21)00095-8
Rovira A, Auger C, Alonso J (2013) Magnetic resonance monitoring of lesion evolution in multiple sclerosis. Ther Adv Neurol Disord 6:298–310
pubmed: 23997815 pmcid: 3755529 doi: 10.1177/1756285613484079
Gulani V, Calamante F, Shellock FG et al (2017) Gadolinium deposition in the brain: summary of evidence and recommendations. Lancet Neurol 16:564–570
pubmed: 28653648 doi: 10.1016/S1474-4422(17)30158-8
Ognard J, Barrat JA, Cotton F et al (2021) A roadmap towards pollution prevention and sustainable development of Gadolinium. J Neuroradiol 48:409–411
pubmed: 34506855 doi: 10.1016/j.neurad.2021.08.002
Quattrocchi CC, Parillo M, Spani F et al (2023) Skin thickening of the scalp and high signal intensity of dentate nucleus in multiple sclerosis: association with linear versus macrocyclic gadolinium-based contrast agent administration. Invest Radiol 58:223–230. https://doi.org/10.1097/RLI.0000000000000929
doi: 10.1097/RLI.0000000000000929 pubmed: 36729383
Mallio CA, Rovira À, Parizel PM, Quattrocchi CC (2020) Exposure to gadolinium and neurotoxicity: current status of preclinical and clinical studies. Neuroradiology 62:925–934
pubmed: 32318773 doi: 10.1007/s00234-020-02434-8
Quattrocchi CC, Ramalho J, van der Molen AJ et al (2019) Standardized assessment of the signal intensity increase on unenhanced T1-weighted images in the brain: the European Gadolinium Retention Evaluation Consortium (GREC) Task Force position statement. Eur Radiol 29:3959–3967
pubmed: 30413951 doi: 10.1007/s00330-018-5803-6
Quattrocchi CC, van der Molen AJ (2017) Gadolinium retention in the body and brain: is it time for an international joint research effort? Radiology 282:12–16
pubmed: 28005498 doi: 10.1148/radiol.2016161626
Kanda T, Ishii K, Kawaguchi H et al (2014) High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: relationship with increasing cumulative dose of a gadolinium-based contrast material. Radiology 270:834–841
pubmed: 24475844 doi: 10.1148/radiol.13131669
Thompson AJ, Banwell BL, Barkhof F et al (2018) Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol 17:162–173
pubmed: 29275977 doi: 10.1016/S1474-4422(17)30470-2
Saade C, Bou-Fakhredin R, Yousem DM et al (2018) Gadolinium and multiple sclerosis: vessels, barriers of the brain, and glymphatics. AJNR Am J Neuroradiol 39:2168–2176
pubmed: 30385472 pmcid: 7655403 doi: 10.3174/ajnr.A5773
Minagar A, Alexander JS (2003) Blood-brain barrier disruption in multiple sclerosis. Mult Scler 9:540–549
pubmed: 14664465 doi: 10.1191/1352458503ms965oa
Lassmann H (2019) Pathogenic mechanisms associated with different clinical courses of multiple sclerosis. https://doi.org/10.3389/FIMMU.2018.03116
Barkhof F, Scheltens P, Frequin STFM et al (1992) Relapsing-remitting multiple sclerosis: sequential enhanced MR imaging vs clinical findings in determining disease activity. AJR Am J Roentgenol 159:1041–1047
pubmed: 1414773 doi: 10.2214/ajr.159.5.1414773
Lassmann H (2008) The pathologic substrate of magnetic resonance alterations in multiple sclerosis. Neuroimaging Clin N Am 18:563–576
pubmed: 19068402 doi: 10.1016/j.nic.2008.06.005
Koudriavtseva T, Thompson AJ, Fiorelli M et al (1997) Gadolinium enhanced MRI predicts clinical and MRI disease activity in relapsing-remitting multiple sclerosis. J Neurol Neurosurg Psychiatry 62:285–287
pubmed: 9069488 pmcid: 1064162 doi: 10.1136/jnnp.62.3.285
Cotton F, Weiner HL, Jolesz FA, Guttmann CRG (2003) MRI contrast uptake in new lesions in relapsing-remitting MS followed at weekly intervals. Neurology 60:640–646
pubmed: 12601106 doi: 10.1212/01.WNL.0000046587.83503.1E
Burnham JA, Wright RR, Dreisbach J, Murray RS (1991) The effect of high-dose steroids on MRI gadolinium enhancement in acute demyelinating lesions. Neurology 41:1349–1349
pubmed: 1891079 doi: 10.1212/WNL.41.9.1349
Thompson AJ, Kermode AG, Wicks D et al (1991) Major differences in the dynamics of primary and secondary progressive multiple sclerosis. Ann Neurol 29:53–62
pubmed: 1996879 doi: 10.1002/ana.410290111
Tremlett H, Zhao Y, Joseph J et al (2008) Relapses in multiple sclerosis are age- and time-dependent. J Neurol Neurosurg Psychiatry 79:1368–1374
pubmed: 18535026 doi: 10.1136/jnnp.2008.145805
Koch MW, Mostert J, Greenfield J et al (2020) Gadolinium enhancement on cranial MRI in multiple sclerosis is age dependent. J Neurol 267:2619–2624
pubmed: 32388832 doi: 10.1007/s00415-020-09895-0
Brownlee WJ, Altmann DR, Prados F et al (2019) Early imaging predictors of long-term outcomes in relapse-onset multiple sclerosis. Brain 142:2276–2287
pubmed: 31342055 doi: 10.1093/brain/awz156
Filippi M, Preziosa P, Banwell BL et al (2019) Assessment of lesions on magnetic resonance imaging in multiple sclerosis: practical guidelines. Brain 142:1858–1875
pubmed: 31209474 pmcid: 6598631 doi: 10.1093/brain/awz144
European Medicines Agency. EMA’s final opinion confirms restrictions on use of linear gadolinium agents in body scans (21 July 2017). https://www.ema.europa.eu/en/documents/referral/gadolinium-article-31-referral-emas-final-opinion-confirms-restrictions-use-linear-gadolinium-agents_en-0.pdf . Accessed 20 Feb 2023
FDA Drug Safety Podcast: FDA warns that gadolinium-based contrast agents (GBCAs) are retained in the body; requires new class warnings | FDA. https://www.fda.gov/drugs/fda-drug-safety-podcasts/fda-drug-safety-podcast-fda-warns-gadolinium-based-contrast-agents-gbcas-are-retained-body-requires . Accessed 20 Feb 2023
Wijburg MT, Warnke C, McGuigan C et al (2021) Pharmacovigilance during treatment of multiple sclerosis: early recognition of CNS complications. J Neurol Neurosurg Psychiatry 92:177–188
pubmed: 33229453 doi: 10.1136/jnnp-2020-324534
Mallio CA, Quattrocchi CC, Rovira À, Parizel PM (2020) Gadolinium deposition safety: seeking the patient’s perspective. AJNR Am J Neuroradiol 41:944–946
pubmed: 32381539 pmcid: 7342758 doi: 10.3174/ajnr.A6586
Mallio CA, Piervincenzi C, Gianolio E et al (2019) Absence of dentate nucleus resting-state functional connectivity changes in nonneurological patients with gadolinium-related hyperintensity on T1 -weighted images. J Magn Reson Imaging 50:445–455
pubmed: 30681245 doi: 10.1002/jmri.26669
Mallio CA, Piervincenzi C, Carducci F et al (2020) Within-network brain connectivity in Crohn’s disease patients with gadolinium deposition in the cerebellum. Neuroradiology 62:833–841
pubmed: 32246178 doi: 10.1007/s00234-020-02415-x
Wiendl H, Gold R, Berger T et al (2021) Multiple Sclerosis Therapy Consensus Group (MSTCG): position statement on disease-modifying therapies for multiple sclerosis (white paper). Ther Adv Neurol Disord 14:17562864211039648
pubmed: 34422112 pmcid: 8377320 doi: 10.1177/17562864211039648
Fernandes L, Allen CM, Williams T et al (2021) The contemporary role of MRI in the monitoring and management of people with multiple sclerosis in the UK. Mult Scler Relat Disord 55:103190
pubmed: 34365316 doi: 10.1016/j.msard.2021.103190
Blumfield E, Swenson DW, Iyer RS, Stanescu AL (2019) Gadolinium-based contrast agents - review of recent literature on magnetic resonance imaging signal intensity changes and tissue deposits, with emphasis on pediatric patients. Pediatr Radiol 49:448–457
pubmed: 30923876 doi: 10.1007/s00247-018-4304-8
Towbin AJ, Zhang B, Dillman JR (2021) Evaluation of the effect of multiple administrations of gadopentetate dimeglumine or gadoterate meglumine on brain T1-weighted hyperintensity in pediatric patients. Pediatr Radiol 51:2568–2580
pubmed: 34286351 doi: 10.1007/s00247-021-05134-4
Noda SM, Oztek MA, Stanescu AL et al (2022) Gadolinium retention: should pediatric radiologists be concerned, and how to frame conversations with families. Pediatr Radiol 52:345–353
pubmed: 33978802 doi: 10.1007/s00247-021-04973-5
Oh KY, Roberts VHJ, Schabel MC et al (2015) Gadolinium chelate contrast material in pregnancy: fetal biodistribution in the nonhuman primate. Radiology 276:110–118
pubmed: 25763829 doi: 10.1148/radiol.15141488
Puac P, Rodríguez A, Vallejo C et al (2017) Safety of contrast material use during pregnancy and lactation. Magn Reson Imaging Clin N Am 25:787–797
pubmed: 28964468 doi: 10.1016/j.mric.2017.06.010
Winterstein AG, Thai TN, Nduaguba S et al (2022) Risk of fetal or neonatal death or neonatal intensive care unit admission associated with gadolinium magnetic resonance imaging exposure during pregnancy. Am J Obstet Gynecol 228:465.e1–465.e11
pubmed: 36241080 doi: 10.1016/j.ajog.2022.10.005
Ray JG, Vermeulen MJ, Bharatha A et al (2016) Association between MRI Exposure during pregnancy and fetal and childhood outcomes. JAMA 316:952–961
pubmed: 27599330 doi: 10.1001/jama.2016.12126
Chen MM, Coakley FV, Kaimal A, Laros RK (2008) Guidelines for computed tomography and magnetic resonance imaging use during pregnancy and lactation. Obstet Gynecol 112:333–340
pubmed: 18669732 doi: 10.1097/AOG.0b013e318180a505
Mervak BM, Altun E, McGinty KA et al (2019) MRI in pregnancy: indications and practical considerations. J Magn Reson Imaging 49:621–631
pubmed: 30701610 doi: 10.1002/jmri.26317
Gatta G, Di Grezia G, Cuccurullo V et al (2021) MRI in pregnancy and precision medicine: a review from literature. https://doi.org/10.3390/JPM12010009
ACR (2023) Manual on contrast media, v2023. American College of Radiology, USA. https://www.acr.org/-/media/%20ACR/Files/Clinical-Resources/Contrast_Media.pdf . Accessed 19 Jun 2023
ESUR (2018). ESUR guidelines on contrast agents, v10. https://www.esur.org/wp-content/uploads/2022/03/ESUR-Guidelines-10_0-Final-Version.pdf . Accessed 20 Feb 2023
ACOG (2017) Committee Opinion No. 723: Guidelines for Diagnostic Imaging During Pregnancy and Lactation. Obstet Gynecol 130:e210–e216
doi: 10.1097/AOG.0000000000002355
Webb JA, Thomsen HS (2013) Gadolinium contrast media during pregnancy and lactation. Acta Radiol 54:599–600
pubmed: 23966544 doi: 10.1177/0284185113484894
Wang PI, Chong ST, Kielar AZ et al (2012) Imaging of pregnant and lactating patients: part 1, evidence-based review and recommendations. AJR Am J Roentgenol 198:778–784
pubmed: 22451541 doi: 10.2214/AJR.11.7405
Kubik-Huch RA, Gottstein-Aalame NM, Frenzel T et al (2000) Gadopentetate dimeglumine excretion into human breast milk during lactation. Radiology 216:555–558
pubmed: 10924585 doi: 10.1148/radiology.216.2.r00au09555
Sundgren PC, Leander P (2011) Is administration of gadolinium-based contrast media to pregnant women and small children justified? J Magn Reson Imaging 34:750–757
pubmed: 21928308 doi: 10.1002/jmri.22413
Proença F, Guerreiro C, Sá G, Reimão S (2021) Neuroimaging safety during pregnancy and lactation: a review. Neuroradiology 63:837–845
pubmed: 33704518 doi: 10.1007/s00234-021-02675-1
Little JT, Bookwalter CA (2020) Magnetic resonance safety: pregnancy and lactation. Magn Reson Imaging Clin N Am 28:509–516
pubmed: 33040992 doi: 10.1016/j.mric.2020.06.002
van der Molen AJ, Geenen RWF, Dekkers AI (2023) Guideline safe use of contrast media part 3, Radiological Society of The Netherlands (NVvR). https://radiologen.nl/sites/default/files/Kwaliteit/guideline_safe_use_of_contrast_media_part_3_final_8nov2022_eng.pdf . Accessed 26 Mar 2023
van Waesberghe JH, Castelijns JA, Roser W et al (1997) Single-dose gadolinium with magnetization transfer versus triple-dose gadolinium in the MR detection of multiple sclerosis lesions. AJNR Am J Neuroradiol 18:1279–1285
pubmed: 9282855 pmcid: 8338043
Rovira A, Auger C, Huerga E et al (2017) Cumulative dose of macrocyclic gadolinium-based contrast agent improves detection of enhancing lesions in patients with multiple sclerosis. AJNR Am J Neuroradiol 38:1486–1493
pubmed: 28619842 pmcid: 7960427 doi: 10.3174/ajnr.A5253
Giesel FL, Runge V, Kirchin M et al (2010) Three-dimensional multiphase time-resolved low-dose contrast-enhanced magnetic resonance angiography using TWIST on a 32-channel coil at 3 T. J Comput Assist Tomogr 34:678–683
pubmed: 20861769 doi: 10.1097/RCT.0b013e3181e359c2
Loevner LA, Kolumban B, Hutóczki G et al (2023) Efficacy and safety of gadopiclenol for contrast-enhanced MRI of the central nervous system: the PICTURE randomized clinical trial. Invest Radiol 58:307–313
pubmed: 36729404 doi: 10.1097/RLI.0000000000000944
Gong E, Pauly JM, Wintermark M, Zaharchuk G (2018) Deep learning enables reduced gadolinium dose for contrast-enhanced brain MRI. J Magn Reson Imaging 48:330–340
pubmed: 29437269 doi: 10.1002/jmri.25970
Filippi M, Yousry T, Rocca MA et al (1997) Sensitivity of delayed gadolinium-enhanced MRI in multiple sclerosis. Acta Neurol Scand 95:331–334
pubmed: 9228265 doi: 10.1111/j.1600-0404.1997.tb00220.x
Absinta M, Vuolo L, Rao A et al (2015) Gadolinium-based MRI characterization of leptomeningeal inflammation in multiple sclerosis. Neurology 85:18–28
pubmed: 25888557 pmcid: 4501940 doi: 10.1212/WNL.0000000000001587
Okar SV, Reich DS (2022) Routine gadolinium use for MRI follow-up of multiple sclerosis: point-the role of leptomeningeal enhancement. AJR Am J Roentgenol 219:24–25
pubmed: 34786959 doi: 10.2214/AJR.21.26999
Aymerich FX, Auger C, Alcaide-Leon P et al (2017) Comparison between gadolinium-enhanced 2D T1-weighted gradient-echo and spin-echo sequences in the detection of active multiple sclerosis lesions on 3.0T MRI. Eur Radiol 27:1361–1368
pubmed: 27456965 doi: 10.1007/s00330-016-4503-3
Bapst B, Amegnizin JL, Vignaud A et al (2020) Post-contrast 3D T1-weighted TSE MR sequences (SPACE, CUBE, VISTA/BRAINVIEW, isoFSE, 3D MVOX): technical aspects and clinical applications. J Neuroradiol 47:358–368
pubmed: 32017974 doi: 10.1016/j.neurad.2020.01.085
Hodel J, Outteryck O, Ryo E et al (2014) Accuracy of postcontrast 3D turbo spin-echo MR sequence for the detection of enhanced inflammatory lesions in patients with multiple sclerosis. AJNR Am J Neuroradiol 35:519–523. https://doi.org/10.3174/AJNR.A3795
doi: 10.3174/AJNR.A3795 pubmed: 24200899 pmcid: 7964714
Mugler JP, Bao S, Mulkern RV et al (2000) Optimized single-slab three-dimensional spin-echo MR imaging of the brain. Radiology 216:891–899
pubmed: 10966728 doi: 10.1148/radiology.216.3.r00au46891
de Panafieu A, Lecler A, Goujon A et al (2023) Contrast-enhanced 3D spin echo T1-weighted sequence outperforms 3D gradient echo T1-weighted sequence for the detection of multiple sclerosis lesions on 3.0 T brain MRI. Invest Radiol 58:314–319
pubmed: 36729811 doi: 10.1097/RLI.0000000000000937
Di Perri C, Dwyer MG, Wack DS et al (2009) Signal abnormalities on 1.5 and 3 Tesla brain MRI in multiple sclerosis patients and healthy controls. A morphological and spatial quantitative comparison study. Neuroimage 47:1352–1362
pubmed: 19371784 doi: 10.1016/j.neuroimage.2009.04.019
Do Amaral LLF, Fragoso DC, da Rocha AJ (2019) Improving acute demyelinating lesion detection: which T1-weighted magnetic resonance acquisition is more sensitive to gadolinium enhancement? Arq Neuropsiquiatr 77:485–492
doi: 10.1590/0004-282x20190082
Bastianello S, Gasperini C, Paolillo A et al (1998) Sensitivity of enhanced MR in multiple sclerosis: effects of contrast dose and magnetization transfer contrast. AJNR Am J Neuroradiol 19:1863–1867
pubmed: 9874538 pmcid: 8337734
Algin O, Hakyemez B, Taşkapilioǧlu Ö et al (2010) Imaging of active multiple sclerosis plaques: efficiency of contrast-enhanced magnetization transfer subtraction technique. Diagn Interv Radiol 16:106–111
pubmed: 20309819
Al-Saeed O, Ismail M, Athyal R, Sheikh M (2011) Fat-saturated post gadolinium T1 imaging of the brain in multiple sclerosis. Acta Radiol 52:570–574
pubmed: 21498296 doi: 10.1258/ar.2011.100396
Balashov KE, Aung LL, Dhib-Jalbut S, Keller IA (2011) Acute multiple sclerosis lesion: conversion of restricted diffusion due to vasogenic edema. J Neuroimaging 21:202–204
pubmed: 19888931 pmcid: 2891920 doi: 10.1111/j.1552-6569.2009.00443.x
Bugnicourt J-M, Garcia P-Y, Monet P et al (2010) Teaching NeuroImages: marked reduced apparent diffusion coefficient in acute multiple sclerosis lesion. Neurology 74:e87
pubmed: 20479354 doi: 10.1212/WNL.0b013e3181df09f7
Rosso C, Remy P, Creange A et al (2006) Diffusion-weighted MR imaging characteristics of an acute strokelike form of multiple sclerosis. AJNR Am J Neuroradiol 27:1006–1008
pubmed: 16687533 pmcid: 7975747
Rovira A, Pericot I, Alonso J et al (2002) Serial diffusion-weighted MR imaging and proton MR spectroscopy of acute large demyelinating brain lesions: case report. AJNR Am J Neuroradiol 23:989–994
pubmed: 12063231 pmcid: 7976898
Eisele P, Szabo K, Griebe M et al (2012) Reduced diffusion in a subset of acute MS lesions: a serial multiparametric MRI study. AJNR Am J Neuroradiol 33:1369–1373
pubmed: 22576893 pmcid: 7965514 doi: 10.3174/ajnr.A2975
Lucchinetti C, Brück W, Parisi J et al (2000) Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 47:707–717
pubmed: 10852536 doi: 10.1002/1531-8249(200006)47:6<707::AID-ANA3>3.0.CO;2-Q
Rigby H, Maloney W, Bhan V (2012) Diagnostic considerations in acute MS lesions with restricted diffusion on MRI. Can J Neurol Sci 39:525–526
pubmed: 22728863 doi: 10.1017/S0317167100014074
Tievsky AL, Ptak T, Farkas J (1999) Investigation of apparent diffusion coefficient and diffusion tensor anisotrophy in acute and chronic multiple sclerosis lesions. AJNR Am J Neuroradiol 20:1491–1499
pubmed: 10512236 pmcid: 7657750
Balashov KE, Lindzen E (2012) Acute demyelinating lesions with restricted diffusion in multiple sclerosis. Mult Scler 18:1745–1753
pubmed: 22523157 pmcid: 3576471 doi: 10.1177/1352458512445407
Gupta A, Al-Dasuqi K, Xia F et al (2017) The use of noncontrast quantitative MRI to detect gadolinium-enhancing multiple sclerosis brain lesions: a systematic review and meta-analysis. AJNR Am J Neuroradiol 38:1317–1322
pubmed: 28522663 pmcid: 5509500 doi: 10.3174/ajnr.A5209
Abdoli M, Chakraborty S, MacLean HJ, Freedman MS (2016) The evaluation of MRI diffusion values of active demyelinating lesions in multiple sclerosis. Mult Scler Relat Disord 10:97–102
pubmed: 27919508 doi: 10.1016/j.msard.2016.09.006
Sacco S, Caverzasi E, Papinutto N et al (2020) Neurite orientation dispersion and density imaging for assessing acute inflammation and lesion evolution in MS. AJNR Am J Neuroradiol 41:2219–2226
pubmed: 33154077 pmcid: 7963254 doi: 10.3174/ajnr.A6862
Caruana G, Pessini LM, Cannella R et al (2020) Texture analysis in susceptibility-weighted imaging may be useful to differentiate acute from chronic multiple sclerosis lesions. Eur Radiol 30:6348–6356
pubmed: 32535736 doi: 10.1007/s00330-020-06995-3
Yu O, Mauss Y, Zollner G et al (1999) Distinct patterns of active and non-active plaques using texture analysis on brain NMR images in multiple sclerosis patients: preliminary results. Magn Reson Imaging 17:1261–1267
pubmed: 10576711 doi: 10.1016/S0730-725X(99)00062-4
Michoux N, Guillet A, Rommel D et al (2015) Texture analysis of T2-weighted MR images to assess acute inflammation in brain MS lesions. PLoS One 10
Zhang Y, Gauthier SA, Gupta A et al (2016) Magnetic susceptibility from quantitative susceptibility mapping can differentiate new enhancing from nonenhancing multiple sclerosis lesions without gadolinium injection. AJNR Am J Neuroradiol 37:1794–1799
pubmed: 27365331 pmcid: 5201451 doi: 10.3174/ajnr.A4856
Caruana G, Auger C, Pessini LM et al (2022) SWI as an alternative to contrast-enhanced imaging to detect acute MS lesions. AJNR Am J Neuroradiol 43:534–539
pubmed: 35332015 pmcid: 8993188 doi: 10.3174/ajnr.A7474
Vinayagamani S, Sabarish S, Nair SS et al (2021) Quantitative susceptibility-weighted imaging in predicting disease activity in multiple sclerosis. Neuroradiology 63:1061–1069
pubmed: 33403447 doi: 10.1007/s00234-020-02605-7
Narayana PA, Coronado I, Sujit SJ et al (2020) Deep learning for predicting enhancing lesions in multiple sclerosis from noncontrast MRI. Radiology 294:398–404
pubmed: 31845845 doi: 10.1148/radiol.2019191061
Vargas WS, Monohan E, Pandya S et al (2015) Measuring longitudinal myelin water fraction in new multiple sclerosis lesions. NeuroImage Clin 9:369–375
pubmed: 26594620 pmcid: 4589846 doi: 10.1016/j.nicl.2015.09.003
Filippi M, Rocca MA, Martino G et al (1998) Magnetization transfer changes in the normal appearing white matter precede the appearance of enhancing lesions in patients with multiple sclerosis. Ann Neurol 43:809–814
pubmed: 9629851 doi: 10.1002/ana.410430616
de la Peña MJ, Peña IC, García PG-P et al (2019) Early perfusion changes in multiple sclerosis patients as assessed by MRI using arterial spin labeling. Acta Radiol Open 8:2058460119894214
pubmed: 32002192 pmcid: 6964247

Auteurs

Àlex Rovira (À)

Section of Neuroradiology, Department of Radiology, University Hospital Vall d'Hebron, Autonomous University of Barcelona, Barcelona, Spain. alex.rovira.idi@gencat.cat.

Fabio M Doniselli (FM)

Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.

Cristina Auger (C)

Section of Neuroradiology, Department of Radiology, University Hospital Vall d'Hebron, Autonomous University of Barcelona, Barcelona, Spain.

Lukas Haider (L)

Department of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna, Vienna, Austria.
Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London, UK.

Jerome Hodel (J)

Department of Radiology, Groupe Hospitalier Paris-Saint Joseph, Paris, France.

Mariasavina Severino (M)

Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy.

Mike P Wattjes (MP)

Department of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hannover, Germany.

Aart J van der Molen (AJ)

Department of Radiology, Leiden University Medical Center, Leiden, Netherlands.

Bas Jasperse (B)

Department of Radiology and Nuclear Medicine, MS Center Amsterdam, Amsterdam University Medical Center, Amsterdam, Netherlands.

Carlo A Mallio (CA)

Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy.
Research Unit of Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Rome, Italy.

Tarek Yousry (T)

Lysholm Department of Neuroradiology, UCLH National Hospital for Neurology and Neurosurgery, Neuroradiological Academic Unit, UCL Institute of Neurology, London, UK.

Carlo C Quattrocchi (CC)

Centre for Medical Sciences CISMed, University of Trento, Trento, Italy.
Radiology, Multizonal Unit of Rovereto and Arco, APSS Provincia Autonoma Di Trento, Trento, Italy.

Classifications MeSH